These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 21103585)
1. Lowering grain boundary resistance of BaZr(0.8)Y(0.2)O(3-δ) with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Sun Z; Fabbri E; Bi L; Traversa E Phys Chem Chem Phys; 2011 May; 13(17):7692-700. PubMed ID: 21103585 [TBL] [Abstract][Full Text] [Related]
2. Detrimental Effect of Sintering Additives on Conducting Ceramics: Yttrium-Doped Barium Zirconate. Han D; Uemura S; Hiraiwa C; Majima M; Uda T ChemSusChem; 2018 Dec; 11(23):4102-4113. PubMed ID: 30221836 [TBL] [Abstract][Full Text] [Related]
3. Mn Additive Improves Zr Grain Boundary Diffusion for Sintering of a Y-Doped BaZrO Heo SJ; Harvey SP; Norman AG; Rahman MA; Singh P; Zakutayev A ACS Appl Mater Interfaces; 2024 Mar; 16(9):11646-11655. PubMed ID: 38387025 [TBL] [Abstract][Full Text] [Related]
4. Samarium and yttrium codoped BaCeO₃ proton conductor with improved sinterability and higher electrical conductivity. Shi Z; Sun W; Wang Z; Qian J; Liu W ACS Appl Mater Interfaces; 2014 Apr; 6(7):5175-82. PubMed ID: 24646030 [TBL] [Abstract][Full Text] [Related]
5. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Pergolesi D; Fabbri E; D'Epifanio A; Di Bartolomeo E; Tebano A; Sanna S; Licoccia S; Balestrino G; Traversa E Nat Mater; 2010 Oct; 9(10):846-52. PubMed ID: 20852619 [TBL] [Abstract][Full Text] [Related]
6. Correlation between Concentrations of Ni and Y in Y-Doped BaZrO Han D; Kuno K; Uda T Membranes (Basel); 2019 Aug; 9(8):. PubMed ID: 31382499 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of thin film fuel cells with Zr-rich BaZr Jeong S; Kobayashi T; Kuroda K; Kwon H; Zhu C; Habazaki H; Aoki Y RSC Adv; 2018 Jul; 8(46):26309-26317. PubMed ID: 35541976 [TBL] [Abstract][Full Text] [Related]
8. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. Su C; Shao Z; Lin Y; Wu Y; Wang H Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505 [TBL] [Abstract][Full Text] [Related]
9. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. Dhivya L; Murugan R ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573 [TBL] [Abstract][Full Text] [Related]
10. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731 [TBL] [Abstract][Full Text] [Related]
11. Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. Lin Y; Ran R; Zhang C; Cai R; Shao Z J Phys Chem A; 2010 Mar; 114(11):3764-72. PubMed ID: 19594122 [TBL] [Abstract][Full Text] [Related]
12. Electrical transport properties of In-doped Ce(1-x)In(x)O(2-delta) (x = 0.1; 0.2). Bhella SS; Kuti LM; Li Q; Thangadurai V Dalton Trans; 2009 Nov; (43):9520-8. PubMed ID: 19859608 [TBL] [Abstract][Full Text] [Related]
13. Remarkable dependence of electrochemical performance of SrCo0.8Fe0.2O(3-δ) on A-site nonstoichiometry. Liu H; Zhu X; Cong Y; Zhang T; Yang W Phys Chem Chem Phys; 2012 May; 14(20):7234-9. PubMed ID: 22531780 [TBL] [Abstract][Full Text] [Related]
14. Designing High Interfacial Conduction beyond Bulk via Engineering the Semiconductor-Ionic Heterostructure CeO Xing Y; Zhu B; Hong L; Xia C; Wang B; Wu Y; Cai H; Rauf S; Huang J; Asghar MI; Yang Y; Lin WF ACS Appl Energy Mater; 2022 Dec; 5(12):15373-15384. PubMed ID: 36590881 [TBL] [Abstract][Full Text] [Related]
15. Rapid Laser Reactive Sintering for Sustainable and Clean Preparation of Protonic Ceramics. Mu S; Huang H; Ishii A; Hong Y; Santomauro A; Zhao Z; Zou M; Peng F; Brinkman KS; Xiao H; Tong J ACS Omega; 2020 May; 5(20):11637-11642. PubMed ID: 32478254 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Performance of Li Huang Z; Chen L; Huang B; Xu B; Shao G; Wang H; Li Y; Wang CA ACS Appl Mater Interfaces; 2020 Dec; 12(50):56118-56125. PubMed ID: 33259183 [TBL] [Abstract][Full Text] [Related]
17. Effect of submicron grains on ionic conductivity of nanocrystalline doped ceria. Singh V; Babu S; Karakoti AS; Agarwal A; Seal S J Nanosci Nanotechnol; 2010 Oct; 10(10):6495-503. PubMed ID: 21137752 [TBL] [Abstract][Full Text] [Related]
18. Engineering microstructure and redox properties in the mixed conductor Ce(0.9)Pr(0.1)O(2-δ) + Co 2 mol%. Balaguer M; Solís C; Roitsch S; Serra JM Dalton Trans; 2014 Mar; 43(11):4305-12. PubMed ID: 24141898 [TBL] [Abstract][Full Text] [Related]
19. Transformation of proton-conducting Perovskite-type into fluorite-type fast oxide ion electrolytes using a CO2 capture technique and their electrical properties. Trobec F; Thangadurai V Inorg Chem; 2008 Oct; 47(19):8972-84. PubMed ID: 18707095 [TBL] [Abstract][Full Text] [Related]
20. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes. Ramzy A; Thangadurai V ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]