BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21104103)

  • 1. An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2.
    Sharma NN; Sharma M; Bhalla TC
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1235-43. PubMed ID: 21104103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nocardia globerula NHB-2: a versatile nitrile-degrading organism.
    Bhalla TC; Kumar H
    Can J Microbiol; 2005 Aug; 51(8):705-8. PubMed ID: 16234868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nocardia globerula NHB-2 nitrilase catalysed biotransformation of 4-cyanopyridine to isonicotinic acid.
    Sharma NN; Sharma M; Bhalla TC
    AMB Express; 2012 Apr; 2(1):25. PubMed ID: 22537922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of benzonitrile to benzoic acid using free and agar entrapped cells of Nocardia globerula NHB-2.
    Raj J; Singh N; Prasad S; Seth A; Bhalla TC
    Acta Microbiol Immunol Hung; 2007 Mar; 54(1):79-88. PubMed ID: 17523394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium--Pseudomonas putida CGMCC3830.
    Zhu X; Gong J; Li H; Lu Z; Zhou Z; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):412-24. PubMed ID: 25007577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150.
    Jin LQ; Liu ZQ; Xu JM; Zheng YG
    World J Microbiol Biotechnol; 2013 Mar; 29(3):431-40. PubMed ID: 23085954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production.
    Fan H; Chen L; Sun H; Wang H; Ren Y; Wei D
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1271-1281. PubMed ID: 28585068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved process for synthesis of nicotinic acid using hyper induced whole cell nitrilase of
    Monika ; Sheetal ; Thakur N; Bhalla TC
    3 Biotech; 2022 Nov; 12(11):303. PubMed ID: 36276445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of 3-cyanopyridine to nicotinic acid using whole-cell nitrilase of Gordonia terrae mutant MN12.
    Monika ; Sheetal ; Thakur N; Chand Bhalla T
    Bioprocess Biosyst Eng; 2023 Feb; 46(2):195-206. PubMed ID: 36451047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new nitrilase-producing strain named Rhodobacter sphaeroides LHS-305: biocatalytic characterization and substrate specificity.
    Yang C; Wang X; Wei D
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1556-67. PubMed ID: 21938420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive acetonitrile hydrolysing activity of Nocardia globerula NHB-2: Optimization of production and reaction conditions.
    Kumar H; Prasad S; Raj J; Bhalla TC
    Indian J Exp Biol; 2006 Mar; 44(3):240-5. PubMed ID: 16538864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of terephthalic acid, isophthalic acid and their derivatives from the corresponding dinitriles by tetrachloroterephthalonitrile-induced Rhodococcus sp.
    He YC; Wu YD; Pan XH; Ma CL
    Biotechnol Lett; 2014 Feb; 36(2):341-7. PubMed ID: 24101250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity.
    Nageshwar YV; Sheelu G; Shambhu RR; Muluka H; Mehdi N; Malik MS; Kamal A
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):515-23. PubMed ID: 21188422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity.
    Veselá AB; Franc M; Pelantová H; Kubác D; Vejvoda V; Sulc M; Bhalla TC; Macková M; Lovecká P; Janů P; Demnerová K; Martínková L
    Biodegradation; 2010 Sep; 21(5):761-70. PubMed ID: 20204468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethylformamide is a novel nitrilase inducer in Rhodococcus rhodochrous.
    Chhiba-Govindjee VP; Mathiba K; van der Westhuyzen CW; Steenkamp P; Rashamuse JK; Stoychev S; Bode ML; Brady D
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10055-10065. PubMed ID: 30244278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel nitrilase, BGC4, from Paraburkholderia graminis showing wide-spectrum substrate specificity, a potential versatile biocatalyst for the degradation of nitriles.
    Fan H; Chen L; Sun H; Wang H; Liu Q; Ren Y; Wei D
    Biotechnol Lett; 2017 Nov; 39(11):1725-1731. PubMed ID: 28762035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperinduction of nitrilases in filamentous fungi.
    Kaplan O; Vejvoda V; Charvátová-Pisvejcová A; Martínková L
    J Ind Microbiol Biotechnol; 2006 Nov; 33(11):891-6. PubMed ID: 16909267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal His-tagged nitrilase from Gibberella intermedia: gene cloning, heterologous expression and biochemical properties.
    Gong JS; Li H; Zhu XY; Lu ZM; Wu Y; Shi JS; Xu ZH
    PLoS One; 2012; 7(11):e50622. PubMed ID: 23226336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial metabolism of aromatic nitriles. Enzymology of C-N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216.
    Harper DB
    Biochem J; 1977 Aug; 165(2):309-19. PubMed ID: 21655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10.
    Malandra A; Cantarella M; Kaplan O; Vejvoda V; Uhnáková B; Stepánková B; Kubác D; Martínková L
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):277-84. PubMed ID: 19554325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.