These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21104180)

  • 21. Investigating excited state dynamics of salinixanthin and xanthorhodopsin in the near-infrared.
    Gdor I; Zhu J; Loevsky B; Smolensky E; Friedman N; Sheves M; Ruhman S
    Phys Chem Chem Phys; 2011 Mar; 13(9):3782-7. PubMed ID: 21183996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system.
    Chuon K; Shim JG; Kim SH; Cho SG; Meas S; Kang KW; Kim JH; Das I; Sheves M; Jung KH
    J Photochem Photobiol B; 2021 Aug; 221():112241. PubMed ID: 34130090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.
    Bertsova YV; Arutyunyan AM; Bogachev AV
    Biochemistry (Mosc); 2016 Apr; 81(4):414-9. PubMed ID: 27293099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origin of circular dichroism of xanthorhodopsin. A study with artificial pigments.
    Smolensky Koganov E; Brumfeld V; Friedman N; Sheves M
    J Phys Chem B; 2015 Jan; 119(2):456-64. PubMed ID: 25494883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salinibacter: an extremely halophilic bacterium with archaeal properties.
    Oren A
    FEMS Microbiol Lett; 2013 May; 342(1):1-9. PubMed ID: 23373661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin.
    Misra R; Eliash T; Sudo Y; Sheves M
    J Phys Chem B; 2019 Jan; 123(1):10-20. PubMed ID: 30525616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na
    Anashkin VA; Bertsova YV; Mamedov AM; Mamedov MD; Arutyunyan AM; Baykov AA; Bogachev AV
    Photosynth Res; 2018 May; 136(2):161-169. PubMed ID: 28983723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin.
    Fujimoto KJ; Hayashi S
    J Am Chem Soc; 2009 Oct; 131(40):14152-3. PubMed ID: 19772318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites.
    Gorriti MF; Bamann C; Alonso-Reyes DG; Wood P; Bamberg E; Farías ME; Gärtner W; Albarracín VH
    Photochem Photobiol Sci; 2023 Aug; 22(8):1809-1823. PubMed ID: 37036621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal Binding to Apo-Gloeobacter Rhodopsin: The Role of pH and Retinal-Carotenoid Interaction.
    Jana S; Eliash T; Jung KH; Sheves M
    J Phys Chem B; 2017 Dec; 121(48):10759-10769. PubMed ID: 29111729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
    Niedzwiedzki DM; Swainsbury DJK; Canniffe DP; Hunter CN; Hitchcock A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6502-6508. PubMed ID: 32139606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New C(40)-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium.
    Lutnaes BF; Oren A; Liaaen-Jensen S
    J Nat Prod; 2002 Sep; 65(9):1340-3. PubMed ID: 12350161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin.
    Slouf V; Balashov SP; Lanyi JK; Pullerits T; Polívka T
    Chem Phys Lett; 2011 Nov; 516(1-3):96-101. PubMed ID: 22102759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex.
    Fiedor L; Akahane J; Koyama Y
    Biochemistry; 2004 Dec; 43(51):16487-96. PubMed ID: 15610043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.
    Smolensky Koganov E; Leitus G; Rozin R; Weiner L; Friedman N; Sheves M
    J Phys Chem B; 2017 May; 121(17):4333-4340. PubMed ID: 28379004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the critical role of K
    Hour C; Chuon K; Song MC; Shim JG; Cho SG; Kang KW; Kim JH; Jung KH
    J Photochem Photobiol B; 2024 Jul; 258():112976. PubMed ID: 39002191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.
    Ghosh M; Misra R; Bhattacharya S; Majhi K; Jung KH; Sheves M
    J Phys Chem B; 2023 Mar; 127(10):2128-2137. PubMed ID: 36857147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study.
    Jehlička J; Edwards HG; Oren A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():99-103. PubMed ID: 23376264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls.
    Niedzwiedzki DM; Swainsbury DJK; Hunter CN
    Photosynth Res; 2020 May; 144(2):155-169. PubMed ID: 31350671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region.
    Chiang HK; Chu LK
    Biochem Biophys Rep; 2016 Sep; 7():347-352. PubMed ID: 28955925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.