These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 21104244)
1. Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae. Yoshida H; Arai S; Hara KY; Yamada R; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2011 Mar; 89(5):1417-22. PubMed ID: 21104244 [TBL] [Abstract][Full Text] [Related]
2. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae. Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633 [TBL] [Abstract][Full Text] [Related]
3. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae. Hara KY; Kim S; Kiriyama K; Yoshida H; Arai S; Ishii J; Ogino C; Fukuda H; Kondo A Biotechnol J; 2012 May; 7(5):686-9. PubMed ID: 22294378 [TBL] [Abstract][Full Text] [Related]
4. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534 [TBL] [Abstract][Full Text] [Related]
5. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
6. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115 [TBL] [Abstract][Full Text] [Related]
7. Engineering yeasts for raw starch conversion. van Zyl WH; Bloom M; Viktor MJ Appl Microbiol Biotechnol; 2012 Sep; 95(6):1377-88. PubMed ID: 22797599 [TBL] [Abstract][Full Text] [Related]
8. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism. Kiriyama K; Hara KY; Kondo A Appl Microbiol Biotechnol; 2013 Aug; 97(16):7399-404. PubMed ID: 23820559 [TBL] [Abstract][Full Text] [Related]
9. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2010 Feb; 85(5):1491-8. PubMed ID: 19707752 [TBL] [Abstract][Full Text] [Related]
10. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
11. Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strategies. Cripwell RA; Rose SH; Viljoen-Bloom M; van Zyl WH FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30535120 [TBL] [Abstract][Full Text] [Related]
12. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509 [TBL] [Abstract][Full Text] [Related]
13. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Chen JP; Wu KW; Fukuda H Appl Biochem Biotechnol; 2008 Mar; 145(1-3):59-67. PubMed ID: 18425612 [TBL] [Abstract][Full Text] [Related]
14. [Genetically modified industrial brewing yeast with high-glutathione and low-diacetyl production]. Zhang JN; He XP; Guo XN; Liu N; Zhang BR Sheng Wu Gong Cheng Xue Bao; 2005 Nov; 21(6):942-6. PubMed ID: 16468350 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Khaw TS; Katakura Y; Koh J; Kondo A; Ueda M; Shioya S Appl Microbiol Biotechnol; 2006 May; 70(5):573-9. PubMed ID: 16133340 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Yoshida H; Hara KY; Kiriyama K; Nakayama H; Okazaki F; Matsuda F; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2011 Aug; 91(4):1001-6. PubMed ID: 21573687 [TBL] [Abstract][Full Text] [Related]
17. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Yamada R; Yamakawa S; Tanaka T; Ogino C; Fukuda H; Kondo A Enzyme Microb Technol; 2011 Apr; 48(4-5):393-6. PubMed ID: 22112955 [TBL] [Abstract][Full Text] [Related]
18. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ; Henson MA Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts. Celińska E; Borkowska M; Białas W Appl Microbiol Biotechnol; 2016 Mar; 100(6):2693-707. PubMed ID: 26545757 [TBL] [Abstract][Full Text] [Related]
20. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]