BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21104244)

  • 1. Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae.
    Yoshida H; Arai S; Hara KY; Yamada R; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1417-22. PubMed ID: 21104244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae.
    Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae.
    Hara KY; Kim S; Kiriyama K; Yoshida H; Arai S; Ishii J; Ogino C; Fukuda H; Kondo A
    Biotechnol J; 2012 May; 7(5):686-9. PubMed ID: 22294378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering yeasts for raw starch conversion.
    van Zyl WH; Bloom M; Viktor MJ
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1377-88. PubMed ID: 22797599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7399-404. PubMed ID: 23820559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch.
    Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1491-8. PubMed ID: 19707752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimisation strategies.
    Cripwell RA; Rose SH; Viljoen-Bloom M; van Zyl WH
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30535120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells.
    Chen JP; Wu KW; Fukuda H
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):59-67. PubMed ID: 18425612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetically modified industrial brewing yeast with high-glutathione and low-diacetyl production].
    Zhang JN; He XP; Guo XN; Liu N; Zhang BR
    Sheng Wu Gong Cheng Xue Bao; 2005 Nov; 21(6):942-6. PubMed ID: 16468350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch.
    Khaw TS; Katakura Y; Koh J; Kondo A; Ueda M; Shioya S
    Appl Microbiol Biotechnol; 2006 May; 70(5):573-9. PubMed ID: 16133340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst.
    Yoshida H; Hara KY; Kiriyama K; Nakayama H; Okazaki F; Matsuda F; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1001-6. PubMed ID: 21573687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases.
    Yamada R; Yamakawa S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Enzyme Microb Technol; 2011 Apr; 48(4-5):393-6. PubMed ID: 22112955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.
    Celińska E; Borkowska M; Białas W
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2693-707. PubMed ID: 26545757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.