These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21105031)

  • 1. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore.
    Chu J; González-López M; Cockroft SL; Amorin M; Ghadiri MR
    Angew Chem Int Ed Engl; 2010 Dec; 49(52):10106-9. PubMed ID: 21105031
    [No Abstract]   [Full Text] [Related]  

  • 2. Single DNA rotaxanes of a transmembrane pore protein.
    Sánchez-Quesada J; Saghatelian A; Cheley S; Bayley H; Ghadiri MR
    Angew Chem Int Ed Engl; 2004 Jun; 43(23):3063-7. PubMed ID: 15188482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores.
    Ashkenasy N; Sánchez-Quesada J; Bayley H; Ghadiri MR
    Angew Chem Int Ed Engl; 2005 Feb; 44(9):1401-4. PubMed ID: 15666419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-stranded DNA within nanopores: conformational dynamics and implications for sequencing; a molecular dynamics simulation study.
    Guy AT; Piggot TJ; Khalid S
    Biophys J; 2012 Sep; 103(5):1028-36. PubMed ID: 23009852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution.
    Cockroft SL; Chu J; Amorin M; Ghadiri MR
    J Am Chem Soc; 2008 Jan; 130(3):818-20. PubMed ID: 18166054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions.
    de Zoysa RS; Krishantha DM; Zhao Q; Gupta J; Guan X
    Electrophoresis; 2011 Nov; 32(21):3034-41. PubMed ID: 21997574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopore sequencing: from imagination to reality.
    Bayley H
    Clin Chem; 2015 Jan; 61(1):25-31. PubMed ID: 25477535
    [No Abstract]   [Full Text] [Related]  

  • 10. Replication of individual DNA molecules under electronic control using a protein nanopore.
    Olasagasti F; Lieberman KR; Benner S; Cherf GM; Dahl JM; Deamer DW; Akeson M
    Nat Nanotechnol; 2010 Nov; 5(11):798-806. PubMed ID: 20871614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crowding-Induced DNA Translocation through a Protein Nanopore.
    Yao F; Peng X; Su Z; Tian L; Guo Y; Kang XF
    Anal Chem; 2020 Mar; 92(5):3827-3833. PubMed ID: 32048508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring ssDNA translocation through α-hemolysin using coarse-grained steered molecular dynamics.
    Okyay C; Dessaux D; Ramirez R; Mathé J; Basdevant N
    Nanoscale; 2024 Aug; 16(33):15677-15689. PubMed ID: 39078242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore.
    Qing Y; Bayley H
    J Am Chem Soc; 2021 Nov; 143(43):18181-18187. PubMed ID: 34669377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition.
    Cabello-Aguilar S; Balme S; Chaaya AA; Bechelany M; Balanzat E; Janot JM; Pochat-Bohatier C; Miele P; Dejardin P
    Nanoscale; 2013 Oct; 5(20):9582-6. PubMed ID: 24057036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers.
    Yoshida H; Goto Y; Akahori R; Tada Y; Terada S; Komura M; Iyoda T
    Nanoscale; 2016 Nov; 8(43):18270-18276. PubMed ID: 27762412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of DNA immobilized in the alpha-hemolysin nanopore.
    Purnell R; Schmidt J
    Methods Mol Biol; 2012; 870():39-53. PubMed ID: 22528257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow.
    Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore.
    Wen S; Zeng T; Liu L; Zhao K; Zhao Y; Liu X; Wu HC
    J Am Chem Soc; 2011 Nov; 133(45):18312-7. PubMed ID: 21995430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of translocation in individual DNA polymerase complexes.
    Dahl JM; Mai AH; Cherf GM; Jetha NN; Garalde DR; Marziali A; Akeson M; Wang H; Lieberman KR
    J Biol Chem; 2012 Apr; 287(16):13407-21. PubMed ID: 22378784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore biosensor for label-free and real-time detection of anthrax lethal factor.
    Wang L; Han Y; Zhou S; Wang G; Guan X
    ACS Appl Mater Interfaces; 2014 May; 6(10):7334-9. PubMed ID: 24806593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.