These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21105429)
1. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution]. Li N; Lü JS; Altemann W Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2508-11. PubMed ID: 21105429 [TBL] [Abstract][Full Text] [Related]
2. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area]. Qu YH; Jiao SH; Liu SH; Zhu YQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3176-81. PubMed ID: 26978931 [TBL] [Abstract][Full Text] [Related]
3. Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data. Banerjee BP; Raval S; Zhai H; Cullen PJ Environ Monit Assess; 2017 Nov; 189(12):604. PubMed ID: 29101574 [TBL] [Abstract][Full Text] [Related]
4. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China. Pan Y; Li H Environ Manage; 2016 Apr; 57(4):879-93. PubMed ID: 26787014 [TBL] [Abstract][Full Text] [Related]
5. Spectral Estimation Model Construction of Heavy Metals in Mining Reclamation Areas. Dong J; Dai W; Xu J; Li S Int J Environ Res Public Health; 2016 Jun; 13(7):. PubMed ID: 27367708 [TBL] [Abstract][Full Text] [Related]
6. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: An overview. Yu H; Zahidi I Sci Total Environ; 2023 Mar; 864():161135. PubMed ID: 36566867 [TBL] [Abstract][Full Text] [Related]
7. Heavy Metal Pollution and Ecological Risk Assessment of the Agriculture Soil in Xunyang Mining Area, Shaanxi Province, Northwestern China. Zhu D; Wei Y; Zhao Y; Wang Q; Han J Bull Environ Contam Toxicol; 2018 Aug; 101(2):178-184. PubMed ID: 29947911 [TBL] [Abstract][Full Text] [Related]
8. Spectral characteristics of the correlation between elemental arsenic and vegetation stress in the Yueliangbao gold mining. Lin W; Tu Y; Liu F; Guo Y; Wang X; Su J Environ Geochem Health; 2023 Nov; 45(11):8203-8219. PubMed ID: 37555879 [TBL] [Abstract][Full Text] [Related]
9. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Li Z; Ma Z; van der Kuijp TJ; Yuan Z; Huang L Sci Total Environ; 2014 Jan; 468-469():843-53. PubMed ID: 24076505 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal variation of vegetation cover in the main mining area of Qibaoshan Town, China: Potential impacts from mining damage, solid waste discharge and land reclamation. Yu H; Zahidi I Sci Total Environ; 2023 Feb; 859(Pt 2):160392. PubMed ID: 36423851 [TBL] [Abstract][Full Text] [Related]
11. Mapping leaf metal content over industrial brownfields using airborne hyperspectral imaging and optimized vegetation indices. Lassalle G; Fabre S; Credoz A; Hédacq R; Dubucq D; Elger A Sci Rep; 2021 Jan; 11(1):2. PubMed ID: 33414514 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Rashed MN J Hazard Mater; 2010 Jun; 178(1-3):739-46. PubMed ID: 20188467 [TBL] [Abstract][Full Text] [Related]
13. Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms. Liu T; Liu X; Liu M; Wu L Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558149 [TBL] [Abstract][Full Text] [Related]
14. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China. Fei JC; Min XB; Wang ZX; Pang ZH; Liang YJ; Ke Y Environ Sci Pollut Res Int; 2017 Dec; 24(35):27573-27586. PubMed ID: 28980103 [TBL] [Abstract][Full Text] [Related]
15. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece). Liakopoulos A; Lemière B; Michael K; Crouzet C; Laperche V; Romaidis I; Drougas I; Lassin A Waste Manag Res; 2010 Nov; 28(11):996-1009. PubMed ID: 20659969 [TBL] [Abstract][Full Text] [Related]
16. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage]. Xu C; Xia BC; Wu HN; Lin XF; Qiu RL Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348 [TBL] [Abstract][Full Text] [Related]
17. Effect of cropping systems on heavy metal distribution and mercury fractionation in the Wanshan mining district, China: implications for environmental management. Wang J; Feng X; Anderson CW; Qiu G; Bao Z; Shang L Environ Toxicol Chem; 2014 Sep; 33(9):2147-55. PubMed ID: 24924832 [TBL] [Abstract][Full Text] [Related]
18. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. Rathod PH; Rossiter DG; Noomen MF; van der Meer FD Int J Phytoremediation; 2013; 15(5):405-26. PubMed ID: 23488168 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal variation of vegetation cover in mining areas of Dexing City, China. Yu H; Zahidi I; Liang D Environ Res; 2023 May; 225():115634. PubMed ID: 36889570 [TBL] [Abstract][Full Text] [Related]
20. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China. Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]