These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging. Bouzigues C; Morel M; Triller A; Dahan M Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11251-6. PubMed ID: 17592112 [TBL] [Abstract][Full Text] [Related]
4. An information-theoretic characterization of the optimal gradient sensing response of cells. Andrews BW; Iglesias PA PLoS Comput Biol; 2007 Aug; 3(8):e153. PubMed ID: 17676949 [TBL] [Abstract][Full Text] [Related]
5. A mechanism for the polarity formation of chemoreceptors at the growth cone membrane for gradient amplification during directional sensing. Bouzigues C; Holcman D; Dahan M PLoS One; 2010 Feb; 5(2):e9243. PubMed ID: 20179770 [TBL] [Abstract][Full Text] [Related]
8. Adaptation in the chemotactic guidance of nerve growth cones. Ming GL; Wong ST; Henley J; Yuan XB; Song HJ; Spitzer NC; Poo MM Nature; 2002 May; 417(6887):411-8. PubMed ID: 11986620 [TBL] [Abstract][Full Text] [Related]
9. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. Adams DN; Kao EY; Hypolite CL; Distefano MD; Hu WS; Letourneau PC J Neurobiol; 2005 Jan; 62(1):134-47. PubMed ID: 15452851 [TBL] [Abstract][Full Text] [Related]
10. Pursuing a 'turning point' in growth cone research. Farrar NR; Spencer GE Dev Biol; 2008 Jun; 318(1):102-11. PubMed ID: 18436201 [TBL] [Abstract][Full Text] [Related]
11. Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Miyanaga Y; Matsuoka S; Yanagida T; Ueda M Biosystems; 2007 Apr; 88(3):251-60. PubMed ID: 17184903 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of excitation and adaptation in Dictyostelium. Pitt GS; Gundersen RE; Devreotes PN Semin Cell Biol; 1990 Apr; 1(2):99-104. PubMed ID: 2129339 [TBL] [Abstract][Full Text] [Related]
13. Stochastic control of spontaneous signal generation for gradient sensing in chemotaxis. Naoki H; Sakumura Y; Ishii S J Theor Biol; 2008 Nov; 255(2):259-66. PubMed ID: 18789338 [TBL] [Abstract][Full Text] [Related]
14. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Firtel RA; Chung CY Bioessays; 2000 Jul; 22(7):603-15. PubMed ID: 10878573 [TBL] [Abstract][Full Text] [Related]
15. The influence of receptor positioning on chemotactic information. Nguyen H; Dayan P; Goodhill GJ J Theor Biol; 2014 Nov; 360():95-101. PubMed ID: 24997237 [TBL] [Abstract][Full Text] [Related]
16. Mathematics of experimentally generated chemoattractant gradients. Postma M; van Haastert PJ Methods Mol Biol; 2009; 571():473-88. PubMed ID: 19763986 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of gradient detection: a comparison of axon pathfinding with eukaryotic cell migration. von Philipsborn A; Bastmeyer M Int Rev Cytol; 2007; 263():1-62. PubMed ID: 17725964 [TBL] [Abstract][Full Text] [Related]
18. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. Rosentreter SM; Davenport RW; Löschinger J; Huf J; Jung J; Bonhoeffer F J Neurobiol; 1998 Dec; 37(4):541-62. PubMed ID: 9858257 [TBL] [Abstract][Full Text] [Related]
19. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Rosoff WJ; Urbach JS; Esrick MA; McAllister RG; Richards LJ; Goodhill GJ Nat Neurosci; 2004 Jun; 7(6):678-82. PubMed ID: 15162167 [TBL] [Abstract][Full Text] [Related]
20. Mathematical characterisation of the transduction chain in growth cone pathfinding. Aletti G; Causin P IET Syst Biol; 2008 May; 2(3):150-61. PubMed ID: 18537455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]