These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Schnaubelt D; Queval G; Dong Y; Diaz-Vivancos P; Makgopa ME; Howell G; De Simone A; Bai J; Hannah MA; Foyer CH Plant Cell Environ; 2015 Feb; 38(2):266-79. PubMed ID: 24329757 [TBL] [Abstract][Full Text] [Related]
4. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628 [TBL] [Abstract][Full Text] [Related]
5. Association of cellular thiol redox status with mitogen-induced calcium mobilization and cell cycle progression in human fibroblasts. Mallery SR; Laufman HB; Solt CW; Stephens RE J Cell Biochem; 1991 Jan; 45(1):82-92. PubMed ID: 1900843 [TBL] [Abstract][Full Text] [Related]
7. Growth-associated modifications of low-molecular-weight thiols and protein sulfhydryls in human bronchial fibroblasts. Atzori L; Dypbukt JM; Sundqvist K; Cotgreave I; Edman CC; Moldéus P; Grafström RC J Cell Physiol; 1990 Apr; 143(1):165-71. PubMed ID: 2318904 [TBL] [Abstract][Full Text] [Related]
8. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Mateo A; Funck D; Mühlenbock P; Kular B; Mullineaux PM; Karpinski S J Exp Bot; 2006; 57(8):1795-807. PubMed ID: 16698814 [TBL] [Abstract][Full Text] [Related]
9. Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Yoshida S; Tamaoki M; Ioki M; Ogawa D; Sato Y; Aono M; Kubo A; Saji S; Saji H; Satoh S; Nakajima N Physiol Plant; 2009 Jul; 136(3):284-98. PubMed ID: 19453511 [TBL] [Abstract][Full Text] [Related]
10. Role of nuclear glutathione as a key regulator of cell proliferation. Pallardó FV; Markovic J; García JL; Viña J Mol Aspects Med; 2009; 30(1-2):77-85. PubMed ID: 19232542 [TBL] [Abstract][Full Text] [Related]
11. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Queval G; Issakidis-Bourguet E; Hoeberichts FA; Vandorpe M; Gakière B; Vanacker H; Miginiac-Maslow M; Van Breusegem F; Noctor G Plant J; 2007 Nov; 52(4):640-57. PubMed ID: 17877712 [TBL] [Abstract][Full Text] [Related]
12. Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Mhamdi A; Mauve C; Gouia H; Saindrenan P; Hodges M; Noctor G Plant Cell Environ; 2010 Jul; 33(7):1112-23. PubMed ID: 20199623 [TBL] [Abstract][Full Text] [Related]
13. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447 [TBL] [Abstract][Full Text] [Related]
14. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase. Xing KY; Lou MF Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824 [TBL] [Abstract][Full Text] [Related]
15. Alkylation-induced oxidative cell injury of renal proximal tubular cells: involvement of glutathione redox-cycle inhibition. van de Water B; Zoeteweij JP; Nagelkerke JF Arch Biochem Biophys; 1996 Mar; 327(1):71-80. PubMed ID: 8615698 [TBL] [Abstract][Full Text] [Related]
16. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Chiao C; Carothers AM; Grunberger D; Solomon G; Preston GA; Barrett JC Cancer Res; 1995 Aug; 55(16):3576-83. PubMed ID: 7543016 [TBL] [Abstract][Full Text] [Related]
17. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Nkabyo YS; Ziegler TR; Gu LH; Watson WH; Jones DP Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1352-9. PubMed ID: 12433666 [TBL] [Abstract][Full Text] [Related]
18. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Banjac A; Perisic T; Sato H; Seiler A; Bannai S; Weiss N; Kölle P; Tschoep K; Issels RD; Daniel PT; Conrad M; Bornkamm GW Oncogene; 2008 Mar; 27(11):1618-28. PubMed ID: 17828297 [TBL] [Abstract][Full Text] [Related]
19. Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. Messina JP; Lawrence DA J Immunol; 1989 Sep; 143(6):1974-81. PubMed ID: 2789253 [TBL] [Abstract][Full Text] [Related]
20. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Pasternak M; Lim B; Wirtz M; Hell R; Cobbett CS; Meyer AJ Plant J; 2008 Mar; 53(6):999-1012. PubMed ID: 18088327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]