These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 21105982)
21. Effect of dietary mineral phosphorus and phytate on in situ ruminal phytate disappearance from different concentrates in dairy cows. Haese E; Möhring J; Steingass H; Schollenberger M; Rodehutscord M J Dairy Sci; 2017 May; 100(5):3672-3684. PubMed ID: 28318577 [TBL] [Abstract][Full Text] [Related]
22. Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium. Shen L; Wu XQ; Zeng QW; Liu HB Curr Microbiol; 2016 Dec; 73(6):915-923. PubMed ID: 27664014 [TBL] [Abstract][Full Text] [Related]
23. PhyA gene product of Aspergillus ficuum and Peniophora lycii produces dissimilar phytases. Ullah AH; Sethumadhavan K Biochem Biophys Res Commun; 2003 Apr; 303(2):463-8. PubMed ID: 12659840 [TBL] [Abstract][Full Text] [Related]
24. N-terminal domain of the beta-propeller phytase of Pseudomonas sp. FB15 plays a role for retention of low-temperature activity and catalytic efficiency. Jang WJ; Lee JM; Park HD; Choi YB; Kong IS Enzyme Microb Technol; 2018 Oct; 117():84-90. PubMed ID: 30037556 [TBL] [Abstract][Full Text] [Related]
25. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. Weber S; Stirnimann CU; Wieser M; Frey D; Meier R; Engelhardt S; Li X; Capitani G; Kammerer RA; Hilbi H J Biol Chem; 2014 Dec; 289(49):34175-88. PubMed ID: 25339170 [TBL] [Abstract][Full Text] [Related]
26. Screening and Characterization of Phytases from Bacteria Isolated from Chilean Hydrothermal Environments. Jorquera MA; Gabler S; Inostroza NG; Acuña JJ; Campos MA; Menezes-Blackburn D; Greiner R Microb Ecol; 2018 Feb; 75(2):387-399. PubMed ID: 28861598 [TBL] [Abstract][Full Text] [Related]
27. Crystal structures of Escherichia coli phytase and its complex with phytate. Lim D; Golovan S; Forsberg CW; Jia Z Nat Struct Biol; 2000 Feb; 7(2):108-13. PubMed ID: 10655611 [TBL] [Abstract][Full Text] [Related]
28. Two types of phytases (histidine acid phytase and β-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (coleoptera) larvae. Zhang R; Yang P; Huang H; Shi P; Yuan T; Yao B Curr Microbiol; 2011 Nov; 63(5):408-15. PubMed ID: 21853317 [TBL] [Abstract][Full Text] [Related]
29. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Huang H; Shao N; Wang Y; Luo H; Yang P; Zhou Z; Zhan Z; Yao B Appl Microbiol Biotechnol; 2009 May; 83(2):249-59. PubMed ID: 19139877 [TBL] [Abstract][Full Text] [Related]
32. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Richardson AE; Hadobas PA; Hayes JE Plant J; 2001 Mar; 25(6):641-9. PubMed ID: 11319031 [TBL] [Abstract][Full Text] [Related]
33. Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigata. Brugger R; Simões Nunes C; Hug D; Vogel K; Guggenbuhl P; Mascarello F; Augem S; Wyss M; van Loon AP; Pasamontes L Appl Microbiol Biotechnol; 2004 Jan; 63(4):383-9. PubMed ID: 12802525 [TBL] [Abstract][Full Text] [Related]
34. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Kumar V; Yadav AN; Verma P; Sangwan P; Saxena A; Kumar K; Singh B Int J Biol Macromol; 2017 May; 98():595-609. PubMed ID: 28174082 [TBL] [Abstract][Full Text] [Related]
35. Phytase and phytate degradation in humans. Nutr Rev; 1989 May; 47(5):155-7. PubMed ID: 2541385 [TBL] [Abstract][Full Text] [Related]
36. High dietary phytase levels maximize phytate-phosphorus utilization but do not affect protein utilization in chicks fed phosphorus- or amino acid-deficient diets. Augspurger NR; Baker DH J Anim Sci; 2004 Apr; 82(4):1100-7. PubMed ID: 15080332 [TBL] [Abstract][Full Text] [Related]
37. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency. Li Z; Huang H; Yang P; Yuan T; Shi P; Zhao J; Meng K; Yao B FEBS J; 2011 Sep; 278(17):3032-40. PubMed ID: 21707924 [TBL] [Abstract][Full Text] [Related]
38. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Lassen SF; Breinholt J; Østergaard PR; Brugger R; Bischoff A; Wyss M; Fuglsang CC Appl Environ Microbiol; 2001 Oct; 67(10):4701-7. PubMed ID: 11571175 [TBL] [Abstract][Full Text] [Related]
39. A novel β-propeller phytase from the dioxin-degrading bacterium Sphingomonas wittichii RW-1. Sanangelantoni AM; Malatrasi M; Trivelloni E; Visioli G; Agrimonti C Appl Microbiol Biotechnol; 2018 Oct; 102(19):8351-8358. PubMed ID: 30054699 [TBL] [Abstract][Full Text] [Related]
40. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. Andlid TA; Veide J; Sandberg AS Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]