These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 21106005)
1. Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. Luo M; Liu J; Lee RD; Scully BT; Guo B J Integr Plant Biol; 2010 Dec; 52(12):1059-74. PubMed ID: 21106005 [TBL] [Abstract][Full Text] [Related]
2. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079 [TBL] [Abstract][Full Text] [Related]
3. Identification of drought-responsive genes from maize inbred lines. Li FH; Fu FL; Sha LN; Li WC Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):607-11. PubMed ID: 18349516 [TBL] [Abstract][Full Text] [Related]
4. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress. Yue G; Zhuang Y; Li Z; Sun L; Zhang J Biosci Rep; 2008 Jun; 28(3):125-34. PubMed ID: 18422487 [TBL] [Abstract][Full Text] [Related]
5. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. Gorantla M; Babu PR; Lachagari VB; Reddy AM; Wusirika R; Bennetzen JL; Reddy AR J Exp Bot; 2007; 58(2):253-65. PubMed ID: 17132712 [TBL] [Abstract][Full Text] [Related]
6. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806 [TBL] [Abstract][Full Text] [Related]
7. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. Jain M; Khurana JP FEBS J; 2009 Jun; 276(11):3148-62. PubMed ID: 19490115 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li HY; Wang TY; Shi YS; Fu JJ; Song YC; Wang GY; Li Y DNA Seq; 2007 Dec; 18(6):445-60. PubMed ID: 17676474 [TBL] [Abstract][Full Text] [Related]
9. Early PLDalpha-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. Mane SP; Vasquez-Robinet C; Sioson AA; Heath LS; Grene R J Exp Bot; 2007; 58(2):241-52. PubMed ID: 17261695 [TBL] [Abstract][Full Text] [Related]
10. Time of day shapes Arabidopsis drought transcriptomes. Wilkins O; Bräutigam K; Campbell MM Plant J; 2010 Sep; 63(5):715-27. PubMed ID: 20553421 [TBL] [Abstract][Full Text] [Related]
11. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. Jin Y; Yang H; Wei Z; Ma H; Ge X Mol Plant; 2013 Sep; 6(5):1630-45. PubMed ID: 23604203 [TBL] [Abstract][Full Text] [Related]
12. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. Ding Z; Li S; An X; Liu X; Qin H; Wang D J Genet Genomics; 2009 Jan; 36(1):17-29. PubMed ID: 19161942 [TBL] [Abstract][Full Text] [Related]
13. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses. Zhang LM; Liu XG; Qu XN; Yu Y; Han SP; Dou Y; Xu YY; Jing HC; Hao DY J Integr Plant Biol; 2013 Nov; 55(11):1147-65. PubMed ID: 24034274 [TBL] [Abstract][Full Text] [Related]
15. Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination. Jiang T; Zhou B; Luo M; Abbas HK; Kemerait R; Lee RD; Scully BT; Guo B Toxins (Basel); 2011 Jun; 3(6):538-50. PubMed ID: 22069724 [TBL] [Abstract][Full Text] [Related]
16. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Qin F; Kakimoto M; Sakuma Y; Maruyama K; Osakabe Y; Tran LS; Shinozaki K; Yamaguchi-Shinozaki K Plant J; 2007 Apr; 50(1):54-69. PubMed ID: 17346263 [TBL] [Abstract][Full Text] [Related]
17. Histological and microarray analysis of the direct effect of water shortage alone or combined with heat on early grain development in wheat (Triticum aestivum). Szucs A; Jäger K; Jurca ME; Fábián A; Bottka S; Zvara A; Barnabás B; Fehér A Physiol Plant; 2010 Oct; 140(2):174-88. PubMed ID: 20573045 [TBL] [Abstract][Full Text] [Related]
18. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize. Park YS; Bae DW; Ryu CM PLoS One; 2015; 10(12):e0143879. PubMed ID: 26630288 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Quan R; Hu S; Zhang Z; Zhang H; Zhang Z; Huang R Plant Biotechnol J; 2010 May; 8(4):476-88. PubMed ID: 20233336 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Yu LX; Setter TL Plant Physiol; 2003 Feb; 131(2):568-82. PubMed ID: 12586881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]