BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 21106074)

  • 1. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF.
    Liu ZL; Ma M
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3473-3492. PubMed ID: 32103314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in saccharomyces cerevisiae.
    Schüller C; Mamnun YM; Wolfger H; Rockwell N; Thorner J; Kuchler K
    Mol Biol Cell; 2007 Dec; 18(12):4932-44. PubMed ID: 17881724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3.
    Mahé Y; Parle-McDermott A; Nourani A; Delahodde A; Lamprecht A; Kuchler K
    Mol Microbiol; 1996 Apr; 20(1):109-17. PubMed ID: 8861209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and comparative transcriptomics analysis of RDS1 overexpression reveal tolerance of Saccharomyces cerevisiae to furfural.
    Tafere Abrha G; Li Q; Kuang X; Xiao D; Ayepa E; Wu J; Chen H; Zhang Z; Liu Y; Yu X; Xiang Q; Ma M
    J Biosci Bioeng; 2023 Oct; 136(4):270-277. PubMed ID: 37544800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.
    Kim D; Hahn JS
    Appl Environ Microbiol; 2013 Aug; 79(16):5069-77. PubMed ID: 23793623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.
    Wu G; Xu Z; Jönsson LJ
    Microb Cell Fact; 2017 Nov; 16(1):199. PubMed ID: 29137634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.
    Petersson A; Almeida JR; Modig T; Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF; Lidén G
    Yeast; 2006 Apr; 23(6):455-64. PubMed ID: 16652391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production.
    Sehnem NT; Machado Ada S; Leite FC; Pita Wde B; de Morais MA; Ayub MA
    Bioresour Technol; 2013 Apr; 133():190-6. PubMed ID: 23422309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae.
    Swagatika S; Tomar RS
    Biochem Biophys Res Commun; 2021 May; 553():141-147. PubMed ID: 33770579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu LZ
    BMC Microbiol; 2010 Jun; 10():169. PubMed ID: 20537179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae.
    Zhou Q; Liu ZL; Ning K; Wang A; Zeng X; Xu J
    Sci Rep; 2014 Oct; 4():6556. PubMed ID: 25296911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of an ATP-binding cassette transporter-encoding gene (YOR1) is required for oligomycin resistance in Saccharomyces cerevisiae.
    Katzmann DJ; Hallstrom TC; Voet M; Wysock W; Golin J; Volckaert G; Moye-Rowley WS
    Mol Cell Biol; 1995 Dec; 15(12):6875-83. PubMed ID: 8524254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.
    Song M; Ouyang Z; Liu ZL
    IET Syst Biol; 2009 May; 3(3):203-18. PubMed ID: 19449980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae.
    Nguyen TTM; Ishida Y; Kato S; Iwaki A; Izawa S
    Yeast; 2018 Jul; 35(7):465-475. PubMed ID: 29575020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL; Ma M; Song M
    Mol Genet Genomics; 2009 Sep; 282(3):233-44. PubMed ID: 19517136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.