These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21106131)

  • 1. Network analysis of human protein location.
    Kumar G; Ranganathan S
    BMC Bioinformatics; 2010 Oct; 11 Suppl 7(Suppl 7):S9. PubMed ID: 21106131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interaction as a predictor of subcellular location.
    Shin CJ; Wong S; Davis MJ; Ragan MA
    BMC Syst Biol; 2009 Feb; 3():28. PubMed ID: 19243629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCL-Epred: a generalised de novo eukaryotic protein subcellular localisation predictor.
    Mooney C; Cessieux A; Shields DC; Pollastri G
    Amino Acids; 2013 Aug; 45(2):291-9. PubMed ID: 23568340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-based prediction of metabolic enzymes' subcellular localization.
    Mintz-Oron S; Aharoni A; Ruppin E; Shlomi T
    Bioinformatics; 2009 Jun; 25(12):i247-52. PubMed ID: 19477995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields.
    Zhu L; Hofestadt R; Ester M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1471-1482. PubMed ID: 30736003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.
    Rey S; Gardy JL; Brinkman FS
    BMC Genomics; 2005 Nov; 6():162. PubMed ID: 16288665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information.
    Zhang W; Xue X; Xie C; Li Y; Liu J; Chen H; Li G
    Interdiscip Sci; 2021 Sep; 13(3):349-361. PubMed ID: 33772722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations.
    Hooper CM; Castleden IR; Tanz SK; Aryamanesh N; Millar AH
    Nucleic Acids Res; 2017 Jan; 45(D1):D1064-D1074. PubMed ID: 27899614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine.
    Thakur A; Rajput A; Kumar M
    Mol Biosyst; 2016 Jul; 12(8):2572-86. PubMed ID: 27272007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction.
    Roslan R; Othman RM; Shah ZA; Kasim S; Asmuni H; Taliba J; Hassan R; Zakaria Z
    Comput Biol Med; 2010 Jun; 40(6):555-64. PubMed ID: 20417930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DualAligner: a dual alignment-based strategy to align protein interaction networks.
    Seah BS; Bhowmick SS; Dewey CF
    Bioinformatics; 2014 Sep; 30(18):2619-26. PubMed ID: 24872427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information.
    Tang X; Hu X; Yang X; Fan Y; Li Y; Hu W; Liao Y; Zheng MC; Peng W; Gao L
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):433. PubMed ID: 27535125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology.
    Gioutlakis A; Klapa MI; Moschonas NK
    PLoS One; 2017; 12(10):e0186039. PubMed ID: 29023571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deducing intracellular distributions of metabolic pathways from genomic data.
    Gruber A; Kroth PG
    Methods Mol Biol; 2014; 1083():187-211. PubMed ID: 24218217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins.
    Xue X; Zhang W; Fan A
    PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network based prediction of protein localisation using diffusion kernel.
    Mondal A; Hu J
    Int J Data Min Bioinform; 2014; 9(4):386-400. PubMed ID: 25757246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.