These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21106584)

  • 1. Flight in slow motion: aerodynamics of the pterosaur wing.
    Palmer C
    Proc Biol Sci; 2011 Jun; 278(1713):1881-5. PubMed ID: 21106584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness.
    Witton MP; Habib MB
    PLoS One; 2010 Nov; 5(11):e13982. PubMed ID: 21085624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of the unique pterosaur pteroid.
    Palmer C; Dyke GJ
    Proc Biol Sci; 2010 Apr; 277(1684):1121-7. PubMed ID: 20007183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on the wing morphology of pterosaurs.
    Palmer C; Dyke G
    Proc Biol Sci; 2012 Mar; 279(1731):1218-24. PubMed ID: 21957137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pterosaurs evolved a muscular wing-body junction providing multifaceted flight performance benefits: Advanced aerodynamic smoothing, sophisticated wing root control, and wing force generation.
    Pittman M; Barlow LA; Kaye TG; Habib MB
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34663691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the pterosaur got its wings.
    Tokita M
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1163-78. PubMed ID: 25361444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High lift function of the pteroid bone and forewing of pterosaurs.
    Wilkinson MT; Unwin DM; Ellington CP
    Proc Biol Sci; 2006 Jan; 273(1582):119-26. PubMed ID: 16519243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powered flight in hatchling pterosaurs: evidence from wing form and bone strength.
    Naish D; Witton MP; Martin-Silverstone E
    Sci Rep; 2021 Jul; 11(1):13130. PubMed ID: 34294737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air space proportion in pterosaur limb bones using computed tomography and its implications for previous estimates of pneumaticity.
    Martin EG; Palmer C
    PLoS One; 2014; 9(5):e97159. PubMed ID: 24817312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 150 million years of sustained increase in pterosaur flight efficiency.
    Venditti C; Baker J; Benton MJ; Meade A; Humphries S
    Nature; 2020 Nov; 587(7832):83-86. PubMed ID: 33116315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
    Claessens LP; O'Connor PM; Unwin DM
    PLoS One; 2009; 4(2):e4497. PubMed ID: 19223979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sailing the skies: the improbable aeronautical success of the pterosaurs.
    Wilkinson MT
    J Exp Biol; 2007 May; 210(Pt 10):1663-71. PubMed ID: 17488930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs.
    Sato K; Sakamoto KQ; Watanuki Y; Takahashi A; Katsumata N; Bost CA; Weimerskirch H
    PLoS One; 2009; 4(4):e5400. PubMed ID: 19401767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gliding swifts attain laminar flow over rough wings.
    Lentink D; de Kat R
    PLoS One; 2014; 9(6):e99901. PubMed ID: 24964089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First record of a pterosaur landing trackway.
    Mazin JM; Billon-Bruyat JP; Padian K
    Proc Biol Sci; 2009 Nov; 276(1674):3881-6. PubMed ID: 19692407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.