BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21106756)

  • 1. Pathology tissue-chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples.
    Fanelli M; Amatori S; Barozzi I; Soncini M; Dal Zuffo R; Bucci G; Capra M; Quarto M; Dellino GI; Mercurio C; Alcalay M; Viale G; Pelicci PG; Minucci S
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21535-40. PubMed ID: 21106756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin immunoprecipitation and high-throughput sequencing from paraffin-embedded pathology tissue.
    Fanelli M; Amatori S; Barozzi I; Minucci S
    Nat Protoc; 2011 Nov; 6(12):1905-19. PubMed ID: 22082985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenomic profiling of archived FFPE tissues by enhanced PAT-ChIP (EPAT-ChIP) technology.
    Amatori S; Persico G; Paolicelli C; Hillje R; Sahnane N; Corini F; Furlan D; Luzi L; Minucci S; Giorgio M; Pelicci PG; Fanelli M
    Clin Epigenetics; 2018 Nov; 10(1):143. PubMed ID: 30446010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis.
    Patten DK; Corleone G; Magnani L
    Methods Mol Biol; 2018; 1767():271-288. PubMed ID: 29524141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Current State of Chromatin Immunoprecipitation (ChIP) from FFPE Tissues.
    Amatori S; Fanelli M
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets.
    Madrigal P
    Bioinformatics; 2017 Mar; 33(5):746-748. PubMed ID: 27993776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape.
    Fagnocchi L; Zippo A
    Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling Chromatin Landscape at High Resolution and Throughput with 2C-ChIP.
    Wang XQD; Cameron CJF; Segal D; Paquette D; Blanchette M; Dostie J
    Methods Mol Biol; 2021; 2157():127-157. PubMed ID: 32820402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automating ChIP-seq experiments to generate epigenetic profiles on 10,000 HeLa cells.
    Berguet G; Hendrickx J; Sabatel C; Laczik M; Squazzo S; Mazon Pelaez I; Saxena R; Pendeville H; Poncelet D
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling Histone Methylation in Low Numbers of Cells.
    Brind'Amour J; Lorincz MC
    Methods Mol Biol; 2022; 2529():229-251. PubMed ID: 35733018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-Seq: Library Preparation and Sequencing.
    Sheaffer KL; Schug J
    Methods Mol Biol; 2016; 1402():101-117. PubMed ID: 26721486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAT-ChIP coupled with laser microdissection allows the study of chromatin in selected cell populations from paraffin-embedded patient samples.
    Amatori S; Ballarini M; Faversani A; Belloni E; Fusar F; Bosari S; Pelicci PG; Minucci S; Fanelli M
    Epigenetics Chromatin; 2014; 7():18. PubMed ID: 25104973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications.
    Grzybowski AT; Shah RN; Richter WF; Ruthenburg AJ
    Nat Protoc; 2019 Dec; 14(12):3275-3302. PubMed ID: 31723301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin Immunoprecipitation Sequencing (ChIP-seq) Protocol for Small Amounts of Frozen Biobanked Cardiac Tissue.
    Pei J; van den Dungen NAM; Asselbergs FW; Mokry M; Harakalova M
    Methods Mol Biol; 2022; 2458():97-111. PubMed ID: 35103964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation sequencing applied to flower development: ChIP-Seq.
    Graciet E; O'Maoiléidigh DS; Wellmer F
    Methods Mol Biol; 2014; 1110():413-29. PubMed ID: 24395273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Histone Modifications in Acute Myeloid Leukaemia Using Chromatin Immunoprecipitation.
    Shields BJ; Keniry A; Blewitt ME; McCormack MP
    Methods Mol Biol; 2018; 1725():177-184. PubMed ID: 29322418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling the Epigenetic Landscape of the Spermatogonial Stem Cell-Part 1: Epigenomics Assays.
    Cheng K; McCarrey JR
    Methods Mol Biol; 2023; 2656():71-108. PubMed ID: 37249867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP.
    Blanco E; Ballaré C; Di Croce L; Aranda S
    Methods Mol Biol; 2023; 2624():55-72. PubMed ID: 36723809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.