BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21106859)

  • 1. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase.
    Carlström M; Wilcox CS; Welch WJ
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F457-64. PubMed ID: 21106859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine A(2) receptors modulate tubuloglomerular feedback.
    Carlström M; Wilcox CS; Welch WJ
    Am J Physiol Renal Physiol; 2010 Aug; 299(2):F412-7. PubMed ID: 20519378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R; Ollerstam A; Persson AE
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide.
    Araujo M; Welch WJ
    Am J Physiol Renal Physiol; 2009 Apr; 296(4):F790-4. PubMed ID: 19144694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The angiotensin receptor antagonist 2-ethoxy-1-[[2'-(1H- tetrazol-5-yl) biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV11974) attenuates the tubuloglomerular feedback response during NO synthase blockade in rats.
    Kawata T; Hashimoto S; Koike T
    J Pharmacol Exp Ther; 1996 May; 277(2):572-7. PubMed ID: 8627533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between nitric oxide and oxygen radicals in regulation of tubuloglomerular feedback.
    Wilcox CS; Welch WJ
    Acta Physiol Scand; 2000 Jan; 168(1):119-24. PubMed ID: 10691789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension.
    Wilcox CS; Welch WJ
    Kidney Int Suppl; 1996 Jun; 55():S9-13. PubMed ID: 8743503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism.
    Thorup C; Persson AE
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F606-11. PubMed ID: 7524359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired effect by NO synthase inhibition on tubuloglomerular feedback in rats after chronic renal denervation.
    Thorup C; Kurkus J; Morsing P; Ollerstam A; Persson AE
    Acta Physiol Scand; 2000 Jan; 168(1):89-93. PubMed ID: 10691784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors.
    Scislo TJ; Tan N; O'Leary DS
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H638-49. PubMed ID: 15539419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS.
    Dautzenberg M; Keilhoff G; Just A
    J Physiol; 2011 Oct; 589(Pt 19):4731-44. PubMed ID: 21825026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp.
    Turkstra E; Braam B; Koomans HA
    J Am Soc Nephrol; 1998 Sep; 9(9):1596-603. PubMed ID: 9727367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of isoprostane on tubuloglomerular feedback: roles of TP receptors, NOS, and salt intake.
    Welch WJ
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F757-62. PubMed ID: 15613618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide.
    Shi Y; Wang X; Chon KH; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R982-91. PubMed ID: 16293681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macula densa derived nitric oxide in regulation of glomerular capillary pressure.
    Thorup C; Erik A; Persson G
    Kidney Int; 1996 Feb; 49(2):430-6. PubMed ID: 8821827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney.
    Tojo A; Welch WJ; Bremer V; Kimoto M; Kimura K; Omata M; Ogawa T; Vallance P; Wilcox CS
    Kidney Int; 1997 Dec; 52(6):1593-601. PubMed ID: 9407505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR.
    Welch WJ; Tojo A; Wilcox CS
    Am J Physiol Renal Physiol; 2000 May; 278(5):F769-76. PubMed ID: 10807588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine A₁-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment.
    Gao X; Patzak A; Sendeski M; Scheffer PG; Teerlink T; Sällström J; Fredholm BB; Persson AE; Carlström M
    Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1669-81. PubMed ID: 21975649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide in tubuloglomerular feedback: effects of dietary salt.
    Welch WJ; Wilcox CS
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):582-6. PubMed ID: 9269531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals.
    Carlström M; Brown RD; Edlund J; Sällström J; Larsson E; Teerlink T; Palm F; Wåhlin N; Persson AE
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F362-70. PubMed ID: 18032548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.