BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21107443)

  • 21. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.
    Zhou X; Chen D; Tang D; Dong S; Guo C; Guo Z; Zhang Y
    Astrobiology; 2015 Jul; 15(7):523-37. PubMed ID: 26168395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks.
    Suzuki T; Hashimoto H; Matsumoto N; Furutani M; Kunoh H; Takada J
    Appl Environ Microbiol; 2011 May; 77(9):2877-81. PubMed ID: 21378050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-oxidizing bacteria in marine environments: recent progresses and future directions.
    Makita H
    World J Microbiol Biotechnol; 2018 Jul; 34(8):110. PubMed ID: 29974320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA.
    Little CTS; Johannessen KC; Bengtson S; Chan CS; Ivarsson M; Slack JF; Broman C; Thorseth IH; Grenne T; Rouxel OJ; Bekker A
    Geobiology; 2021 May; 19(3):228-249. PubMed ID: 33594795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
    Kato S; Ohkuma M; Powell DH; Krepski ST; Oshima K; Hattori M; Shapiro N; Woyke T; Chan CS
    Front Microbiol; 2015; 6():1265. PubMed ID: 26617599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria.
    Miot J; Benzerara K; Obst M; Kappler A; Hegler F; Schädler S; Bouchez C; Guyot F; Morin G
    Appl Environ Microbiol; 2009 Sep; 75(17):5586-91. PubMed ID: 19592528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
    Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y
    Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of iron-oxidizing bacteria in biocorrosion: a review.
    Emerson D
    Biofouling; 2018 Oct; 34(9):989-1000. PubMed ID: 30642207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil.
    Tong H; Chen M; Lv Y; Liu C; Zheng C; Xia Y
    Environ Geochem Health; 2021 Mar; 43(3):1305-1317. PubMed ID: 32975698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Architecture of Iron Microbial Mats Reflects the Adaptation of Chemolithotrophic Iron Oxidation in Freshwater and Marine Environments.
    Chan CS; McAllister SM; Leavitt AH; Glazer BT; Krepski ST; Emerson D
    Front Microbiol; 2016; 7():796. PubMed ID: 27313567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.
    Langley S; Igric P; Takahashi Y; Sakai Y; Fortin D; Hannington MD; Schwarz-Schampera U
    Geobiology; 2009 Jan; 7(1):35-49. PubMed ID: 19200145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA.
    McBeth JM; Fleming EJ; Emerson D
    Environ Microbiol Rep; 2013 Jun; 5(3):453-63. PubMed ID: 23754725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecological succession among iron-oxidizing bacteria.
    Fleming EJ; Cetinić I; Chan CS; Whitney King D; Emerson D
    ISME J; 2014 Apr; 8(4):804-15. PubMed ID: 24225888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.
    Emerson D; Scott JJ; Benes J; Bowden WB
    Appl Environ Microbiol; 2015 Dec; 81(23):8066-75. PubMed ID: 26386054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering lithoheterotrophy in an obligate chemolithoautotrophic Fe(II) oxidizing bacterium.
    Jain A; Gralnick JA
    Sci Rep; 2021 Jan; 11(1):2165. PubMed ID: 33495498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of Fe-oxidizing bacteria (FeOB) and organic matters in As removal in the heavy-polluted arid soil.
    Ning X; Wang S; Long S; Li L; Dong S; Nan Z
    Ecotoxicol Environ Saf; 2022 Oct; 245():114126. PubMed ID: 36183429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biogeochemistry and microbiology of microaerobic Fe(II) oxidation.
    Emerson D
    Biochem Soc Trans; 2012 Dec; 40(6):1211-6. PubMed ID: 23176456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep.
    Krepski ST; Hanson TE; Chan CS
    Environ Microbiol; 2012 Jul; 14(7):1671-80. PubMed ID: 22151253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection.
    Picard A; Gartman A; Girguis PR
    Astrobiology; 2021 May; 21(5):587-604. PubMed ID: 33780638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.