These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21107546)

  • 1. Determining peptide partitioning properties via computer simulation.
    Ulmschneider JP; Andersson M; Ulmschneider MB
    J Membr Biol; 2011 Jan; 239(1-2):15-26. PubMed ID: 21107546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model.
    Bordner AJ; Zorman B; Abagyan R
    J Comput Aided Mol Des; 2011 Oct; 25(10):895-911. PubMed ID: 21904908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide partitioning properties from direct insertion studies.
    Ulmschneider MB; Smith JC; Ulmschneider JP
    Biophys J; 2010 Jun; 98(12):L60-2. PubMed ID: 20550886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides.
    Ulmschneider MB; Doux JP; Killian JA; Smith JC; Ulmschneider JP
    J Am Chem Soc; 2010 Mar; 132(10):3452-60. PubMed ID: 20163187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly.
    Chen CH; Melo MC; Berglund N; Khan A; de la Fuente-Nunez C; Ulmschneider JP; Ulmschneider MB
    Curr Opin Struct Biol; 2020 Apr; 61():160-166. PubMed ID: 32006812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides.
    Frazee N; Burns V; Gupta C; Mertz B
    Methods Mol Biol; 2021; 2315():161-182. PubMed ID: 34302676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed Free Energies of Peptide Insertion into Bilayers are Independent of Computational Method.
    Gumbart JC; Ulmschneider MB; Hazel A; White SH; Ulmschneider JP
    J Membr Biol; 2018 Jun; 251(3):345-356. PubMed ID: 29520628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer.
    Nymeyer H; Woolf TB; Garcia AE
    Proteins; 2005 Jun; 59(4):783-90. PubMed ID: 15828005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
    Schow EV; Freites JA; Myint PC; Bernsel A; von Heijne G; White SH; Tobias DJ
    J Membr Biol; 2011 Jan; 239(1-2):35-48. PubMed ID: 21127848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.
    Chen CH; Wiedman G; Khan A; Ulmschneider MB
    Biochim Biophys Acta; 2014 Sep; 1838(9):2243-9. PubMed ID: 24769159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    J Am Chem Soc; 2011 Oct; 133(39):15487-95. PubMed ID: 21861483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptides and proteins in membranes: what can we learn via computer simulations?
    Efremov RG; Nolde DE; Konshina AG; Syrtcev NP; Arseniev AS
    Curr Med Chem; 2004 Sep; 11(18):2421-42. PubMed ID: 15379706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and insertion thermodynamics of the transmembrane WALP peptide.
    Bereau T; Bennett WF; Pfaendtner J; Deserno M; Karttunen M
    J Chem Phys; 2015 Dec; 143(24):243127. PubMed ID: 26723612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations.
    Ulmschneider JP; Ulmschneider MB
    Proteins; 2009 May; 75(3):586-97. PubMed ID: 19003985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes.
    Lomize AL; Pogozheva ID; Mosberg HI
    J Chem Inf Model; 2011 Apr; 51(4):930-46. PubMed ID: 21438606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.