BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2110800)

  • 1. Formation of diastereoisomeric 3a-hydroxypyrroloindoles from a tryptophan residue analog mediated by iron (II)-EDTA and L-ascorbate.
    Uchida K; Enomoto N; Itakura K; Kawakishi S
    Arch Biochem Biophys; 1990 May; 279(1):14-20. PubMed ID: 2110800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective formation of oxindole- and formylkynurenine-type products from tryptophan and its peptides treated with a superoxide-generating system in the presence of iron(III)-EDTA: a possible involvement with iron-oxygen complex.
    Itakura K; Uchida K; Kawakishi S
    Chem Res Toxicol; 1994; 7(2):185-90. PubMed ID: 8199307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate.
    Hermes-Lima M; Ponka P; Schulman HM
    Biochim Biophys Acta; 2000 Oct; 1523(2-3):154-60. PubMed ID: 11042379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual mechanism of mangiferin protection against iron-induced damage to 2-deoxyribose and ascorbate oxidation.
    Pardo-Andreu GL; Delgado R; Núñez-Sellés AJ; Vercesi AE
    Pharmacol Res; 2006 Mar; 53(3):253-60. PubMed ID: 16412661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydroxylation of tryptophan.
    Maskos Z; Rush JD; Koppenol WH
    Arch Biochem Biophys; 1992 Aug; 296(2):514-20. PubMed ID: 1321587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems.
    Kim YM; Yamazaki I; Piette LH
    Arch Biochem Biophys; 1994 Mar; 309(2):308-14. PubMed ID: 8135543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative damage to bovine serum albumin induced by hydroxyl radical generating systems of xanthine oxidase + EDTA-Fe3+ and ascorbate + EDTA-Fe3+.
    Miura T; Muraoka S; Ogiso T
    Chem Biol Interact; 1992 Dec; 85(2-3):243-54. PubMed ID: 1337312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation.
    Miller DM; Aust SD
    Arch Biochem Biophys; 1989 May; 271(1):113-9. PubMed ID: 2712569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mangifera indica L. extract (Vimang) inhibits 2-deoxyribose damage induced by Fe (III) plus ascorbate.
    Pardo-Andreu GL; Delgado R; Núñez-Sellés AJ; Vercesi AE
    Phytother Res; 2006 Feb; 20(2):120-4. PubMed ID: 16444664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine-derived fluorophores formed by autoxidation of linoleic acid.
    Itakura K; Uchida K
    Chem Phys Lipids; 2003 Apr; 123(2):187-91. PubMed ID: 12691851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative damage to fibronectin. II. The effect of H2O2 and the hydroxyl radical.
    Vissers MC; Winterbourn CC
    Arch Biochem Biophys; 1991 Mar; 285(2):357-64. PubMed ID: 1654773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tannic acid inhibits in vitro iron-dependent free radical formation.
    Andrade RG; Ginani JS; Lopes GK; Dutra F; Alonso A; Hermes-Lima M
    Biochimie; 2006 Sep; 88(9):1287-96. PubMed ID: 16600466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical driven Fenton reactions--evidence from paraquat radical studies for production of tetravalent iron in the presence and absence of ethylenediaminetetraacetic acid.
    Sutton HC; Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1987 Aug; 256(2):462-71. PubMed ID: 3113335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.