These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21108078)

  • 1. Movement compatibility for frontal controls with displays located in four cardinal orientations.
    Chan AH; Hoffmann ER
    Ergonomics; 2010 Dec; 53(12):1403-19. PubMed ID: 21108078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement compatibility for configurations of displays located in three cardinal orientations and ipsilateral, contralateral and overhead controls.
    Chan AH; Hoffmann ER
    Appl Ergon; 2012 Jan; 43(1):128-40. PubMed ID: 21531381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular displays: control/display arrangements and stereotype strength with eight different display locations.
    Chan AH; Hoffmann ER
    Ergonomics; 2015; 58(12):1983-95. PubMed ID: 26074084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of display location on control-display stereotype strength for translational and rotational controls with linear displays.
    Chan AH; Hoffmann ER
    Ergonomics; 2015; 58(12):1996-2015. PubMed ID: 26147193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of scale-side, indicator type, and control plane on direction-of-turn stereotypes for Hong Kong Chinese subjects.
    Courtney AJ
    Ergonomics; 1994 May; 37(5):865-77. PubMed ID: 8206055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement compatibility for rotary control and circular display--Computer Simulated Test and real Hardware Test.
    Chan WH; Chan AH
    Appl Ergon; 2003 Jan; 34(1):61-71. PubMed ID: 12523806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength and reversibility of stereotypes for a rotary control with linear scales.
    Chan AH; Chan WH
    Percept Mot Skills; 2008 Feb; 106(1):341-53. PubMed ID: 18459383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the validity of the visual field principle for designing control/display arrangements.
    Hoffmann ER; Chan AHS; Man SS; Chan LCM
    Appl Ergon; 2019 Nov; 81():102887. PubMed ID: 31422265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Worringham and Beringer 'visual field' principle for rotary controls.
    Hoffmann ER; Chan AH
    Ergonomics; 2013; 56(10):1620-4. PubMed ID: 23875538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of display movement angle, indicator type and display location on control/display stereotype strength.
    Hoffmann ER; Chan AHS
    Ergonomics; 2017 Aug; 60(8):1146-1157. PubMed ID: 27762172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional control-response relationships for mining equipment.
    Burgess-Limerick R; Krupenia V; Wallis G; Pratim-Bannerjee A; Steiner L
    Ergonomics; 2010 Jun; 53(6):748-57. PubMed ID: 20496241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial stimulus response compatibility for a horizontal visual display with hand and foot controls.
    Chan KW; Chan AH
    Ergonomics; 2011 Mar; 54(3):233-45. PubMed ID: 21390953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curved motions in horizontal and vertical orientations.
    Phillips JG; Ogeil RP
    Hum Mov Sci; 2010 Oct; 29(5):737-50. PubMed ID: 20800304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Another test of sensor lines on control panels.
    Chapanis A; Yoblick DA
    Ergonomics; 2001 Nov; 44(14):1302-11. PubMed ID: 11900420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operator orientation and compatibility in visual-motor task performance.
    Worringham CJ; Beringer DB
    Ergonomics; 1989 Apr; 32(4):387-99. PubMed ID: 2753015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability of location compatibility to the arrangement of display and control in human - vehicle systems: comparison between young and older adults.
    Murata A; Moriwaka M
    Ergonomics; 2007 Jan; 50(1):99-111. PubMed ID: 17178654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.
    Phillips JG; Triggs TJ; Meehan JW
    Ergonomics; 2005 May; 48(6):722-35. PubMed ID: 16087505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Display-control relationships for Chinese subjects using three controls.
    Courtney AJ
    J Hum Ergol (Tokyo); 1991 Jun; 20(1):51-9. PubMed ID: 1820380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.