These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21108267)

  • 21. In vitro incorporation of LNA nucleotides.
    Veedu RN; Vester B; Wengel J
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):1207-10. PubMed ID: 18058567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consequences of 6-thioguanine incorporation into DNA on polymerase, ligase, and endonuclease reactions.
    Ling YH; Chan JY; Beattie KL; Nelson JA
    Mol Pharmacol; 1992 Nov; 42(5):802-7. PubMed ID: 1331762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence.
    DeLucia AM; Grindley ND; Joyce CM
    Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mirror-Image Thymidine Discriminates against Incorporation of Deoxyribonucleotide Triphosphate into DNA and Repairs Itself by DNA Polymerases.
    Xiao Y; Liu Q; Tang X; Yang Z; Wu L; He Y
    Bioconjug Chem; 2017 Aug; 28(8):2125-2134. PubMed ID: 28686433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel applications of locked nucleic acids.
    Veedu RN; Vester B; Wengel J
    Nucleic Acids Symp Ser (Oxf); 2007; (51):29-30. PubMed ID: 18029570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases.
    Nikiforov TT
    Anal Biochem; 2014 Jan; 444():60-6. PubMed ID: 24096197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha.
    Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC
    Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases.
    Misra HS; Pandey PK; Modak MJ; Vinayak R; Pandey VN
    Biochemistry; 1998 Feb; 37(7):1917-25. PubMed ID: 9485318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A versatile toolbox for variable DNA functionalization at high density.
    Jäger S; Rasched G; Kornreich-Leshem H; Engeser M; Thum O; Famulok M
    J Am Chem Soc; 2005 Nov; 127(43):15071-82. PubMed ID: 16248646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase alpha and Klenow fragment (DNA polymerase I).
    Chiaramonte M; Moore CL; Kincaid K; Kuchta RD
    Biochemistry; 2003 Sep; 42(35):10472-81. PubMed ID: 12950174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic polymerization of phosphonate nucleosides.
    Renders M; Lievrouw R; Krecmerová M; Holý A; Herdewijn P
    Chembiochem; 2008 Nov; 9(17):2883-8. PubMed ID: 19006151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA polymerase recognition of 2'-deoxy-2'-fluoroarabinonucleoside 5'-triphosphates (2'F-araNTPs).
    Peng CG; Damha MJ
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):1189-93. PubMed ID: 18058563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Protein-nucleic acid interactions in reactions catalyzed by eukaryotic and prokaryotic DNA-polymerases].
    Lavrik OI; Nevinskiĭ GA
    Biokhimiia; 1989 May; 54(5):757-64. PubMed ID: 2503066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the effects of truncating alpha-helix E' of p66 human immunodeficiency virus type 1 reverse transcriptase on template-primer binding and fidelity of DNA synthesis.
    Menéndez-Arias L
    Biochemistry; 1998 Nov; 37(47):16636-44. PubMed ID: 9843431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical behavior of N-oxidized cytosine and adenine bases in DNA polymerase-mediated primer extension reactions.
    Tsunoda H; Kudo T; Masaki Y; Ohkubo A; Seio K; Sekine M
    Nucleic Acids Res; 2011 Apr; 39(7):2995-3004. PubMed ID: 21300642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases.
    Wheeler M; Chardon A; Goubet A; Morihiro K; Tsan SY; Edwards SL; Kodama T; Obika S; Veedu RN
    Chem Commun (Camb); 2012 Nov; 48(89):11020-2. PubMed ID: 23042489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorous base-pairing effects in a DNA polymerase active site.
    Lai JS; Kool ET
    Chemistry; 2005 May; 11(10):2966-71. PubMed ID: 15744767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multipotential electrochemical detection of primer extension reactions on DNA self-assembled monolayers.
    Di Giusto DA; Wlassoff WA; Giesebrecht S; Gooding JJ; King GC
    J Am Chem Soc; 2004 Apr; 126(13):4120-1. PubMed ID: 15053597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.