These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21108844)

  • 1. β-catenin/cyclin D1 mediated development of suture mesenchyme in calvarial morphogenesis.
    Mirando AJ; Maruyama T; Fu J; Yu HM; Hsu W
    BMC Dev Biol; 2010 Nov; 10():116. PubMed ID: 21108844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Axin2 in calvarial morphogenesis and craniosynostosis.
    Yu HM; Jerchow B; Sheu TJ; Liu B; Costantini F; Puzas JE; Birchmeier W; Hsu W
    Development; 2005 Apr; 132(8):1995-2005. PubMed ID: 15790973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation.
    Liu B; Yu HM; Hsu W
    Dev Biol; 2007 Jan; 301(1):298-308. PubMed ID: 17113065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development.
    Maruyama T; Mirando AJ; Deng CX; Hsu W
    Sci Signal; 2010 May; 3(123):ra40. PubMed ID: 20501936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice.
    Yan Y; Tang D; Chen M; Huang J; Xie R; Jonason JH; Tan X; Hou W; Reynolds D; Hsu W; Harris SE; Puzas JE; Awad H; O'Keefe RJ; Boyce BF; Chen D
    J Cell Sci; 2009 Oct; 122(Pt 19):3566-78. PubMed ID: 19737815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell fate specification during calvarial bone and suture development.
    Lana-Elola E; Rice R; Grigoriadis AE; Rice DP
    Dev Biol; 2007 Nov; 311(2):335-46. PubMed ID: 17931618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors.
    Rodda SJ; McMahon AP
    Development; 2006 Aug; 133(16):3231-44. PubMed ID: 16854976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development.
    Chen J; Lan Y; Baek JA; Gao Y; Jiang R
    Dev Biol; 2009 Oct; 334(1):174-85. PubMed ID: 19631205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals.
    Patel N; Sharpe PT; Miletich I
    Dev Biol; 2011 Oct; 358(1):156-67. PubMed ID: 21806977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glucocorticoid receptor represses cyclin D1 by targeting the Tcf-beta-catenin complex.
    Takayama S; Rogatsky I; Schwarcz LE; Darimont BD
    J Biol Chem; 2006 Jun; 281(26):17856-63. PubMed ID: 16644723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium.
    Kim BM; Mao J; Taketo MM; Shivdasani RA
    Gastroenterology; 2007 Aug; 133(2):529-38. PubMed ID: 17681174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways.
    Dao DY; Yang X; Chen D; Zuscik M; O'Keefe RJ
    Ann N Y Acad Sci; 2007 Nov; 1116():82-99. PubMed ID: 18083923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRY-box containing gene 17 regulates the Wnt/β-catenin signaling pathway in oligodendrocyte progenitor cells.
    Chew LJ; Shen W; Ming X; Senatorov VV; Chen HL; Cheng Y; Hong E; Knoblach S; Gallo V
    J Neurosci; 2011 Sep; 31(39):13921-35. PubMed ID: 21957254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion.
    Polsani N; Yung T; Thomas E; Phung-Rojas M; Gupta I; Denker J; Lau K; Feng X; Ibarra B; Hopyan S; Atit RP
    Development; 2024 Jun; 151(12):. PubMed ID: 38814743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.
    Day TF; Guo X; Garrett-Beal L; Yang Y
    Dev Cell; 2005 May; 8(5):739-50. PubMed ID: 15866164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation.
    Mbalaviele G; Sheikh S; Stains JP; Salazar VS; Cheng SL; Chen D; Civitelli R
    J Cell Biochem; 2005 Feb; 94(2):403-18. PubMed ID: 15526274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wnt/β-catenin signaling in the mouse embryonic cranial mesenchyme is required to sustain the emerging differentiated meningeal layers.
    DiNuoscio G; Atit RP
    Genesis; 2019 Jan; 57(1):e23279. PubMed ID: 30615824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice.
    Frey JL; Kim SP; Li Z; Wolfgang MJ; Riddle RC
    Endocrinology; 2018 Jan; 159(1):272-284. PubMed ID: 29077850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.
    Maruyama T; Jiang M; Abbott A; Yu HI; Huang Q; Chrzanowska-Wodnicka M; Chen EI; Hsu W
    J Bone Miner Res; 2017 Sep; 32(9):1816-1828. PubMed ID: 28520221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.