BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1778 related articles for article (PubMed ID: 21109216)

  • 21. In vivo termini amino acid labeling for quantitative proteomics.
    Nie AY; Zhang L; Yan GQ; Yao J; Zhang Y; Lu HJ; Yang PY; He FC
    Anal Chem; 2011 Aug; 83(15):6026-33. PubMed ID: 21692469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved reporter ion assignment of raw isobaric stable isotope labeled liquid chromatography/matrix-assisted laser desorption/ionization tandem time-of-flight mass spectral data for quantitative proteomics.
    Jakoby T; Tholey A; van den Berg BH
    Rapid Commun Mass Spectrom; 2012 Dec; 26(23):2777-85. PubMed ID: 23124669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.
    Shiio Y; Aebersold R
    Nat Protoc; 2006; 1(1):139-45. PubMed ID: 17406225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments.
    Laskay ÜA; Lobas AA; Srzentić K; Gorshkov MV; Tsybin YO
    J Proteome Res; 2013 Dec; 12(12):5558-69. PubMed ID: 24171472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GeLCMS for in-depth protein characterization and advanced analysis of proteomes.
    Lundby A; Olsen JV
    Methods Mol Biol; 2011; 753():143-55. PubMed ID: 21604121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shotgun proteomics using the iTRAQ isobaric tags.
    Aggarwal K; Choe LH; Lee KH
    Brief Funct Genomic Proteomic; 2006 Jun; 5(2):112-20. PubMed ID: 16772272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomics: bases for protein complexity understanding.
    Rotilio D; Della Corte A; D'Imperio M; Coletta W; Marcone S; Silvestri C; Giordano L; Di Michele M; Donati MB
    Thromb Res; 2012 Mar; 129(3):257-62. PubMed ID: 22283976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of a quantitative cysteinyl-peptide enrichment technology for high-throughput quantitative proteomics.
    Liu T; Qian WJ; Camp DG; Smith RD
    Methods Mol Biol; 2007; 359():107-24. PubMed ID: 17484113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline.
    Trudgian DC; Ridlova G; Fischer R; Mackeen MM; Ternette N; Acuto O; Kessler BM; Thomas B
    Proteomics; 2011 Jul; 11(14):2790-7. PubMed ID: 21656681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. KYSS: mass spectrometry data quality assessment for protein analysis and large-scale proteomics.
    Such-Sanmartín G; Sidoli S; Ventura-Espejo E; Jensen ON
    Biochem Biophys Res Commun; 2014 Mar; 445(4):702-7. PubMed ID: 24480439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage.
    Yang Y; Qiang X; Owsiany K; Zhang S; Thannhauser TW; Li L
    J Proteome Res; 2011 Oct; 10(10):4647-60. PubMed ID: 21842911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Absolute quantitation of protein posttranslational modification isoform.
    Yang Z; Li N
    Methods Mol Biol; 2015; 1306():105-19. PubMed ID: 25930697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments.
    Loziuk PL; Wang J; Li Q; Sederoff RR; Chiang VL; Muddiman DC
    J Proteome Res; 2013 Dec; 12(12):5820-9. PubMed ID: 24144163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome.
    Tanca A; Biosa G; Pagnozzi D; Addis MF; Uzzau S
    Proteomics; 2013 Sep; 13(17):2597-607. PubMed ID: 23784971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF.
    Wu WW; Wang G; Baek SJ; Shen RF
    J Proteome Res; 2006 Mar; 5(3):651-8. PubMed ID: 16512681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 89.