BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21109416)

  • 1. The significance of copper chelators in clinical and experimental application.
    Ding X; Xie H; Kang YJ
    J Nutr Biochem; 2011 Apr; 22(4):301-10. PubMed ID: 21109416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction.
    Hsiao KH; Kao PH; Hseu ZY
    J Hazard Mater; 2007 Sep; 148(1-2):366-76. PubMed ID: 17391842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelators at the cancer coalface: desferrioxamine to Triapine and beyond.
    Yu Y; Wong J; Lovejoy DB; Kalinowski DS; Richardson DR
    Clin Cancer Res; 2006 Dec; 12(23):6876-83. PubMed ID: 17145804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper in diseases and treatments, and copper-based anticancer strategies.
    Tisato F; Marzano C; Porchia M; Pellei M; Santini C
    Med Res Rev; 2010 Jul; 30(4):708-49. PubMed ID: 19626597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer's disease.
    Cherny RA; Barnham KJ; Lynch T; Volitakis I; Li QX; McLean CA; Multhaup G; Beyreuther K; Tanzi RE; Masters CL; Bush AI
    J Struct Biol; 2000 Jun; 130(2-3):209-16. PubMed ID: 10940226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of ascorbate solution by chelating agents that block redox cycling of metal ions.
    Nishikimi M; Ozawa T
    Biochem Int; 1987 Jan; 14(1):111-7. PubMed ID: 3566770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of metal chelators on lipid peroxidation in irradiated erythrocytes.
    Knight JA; Searles DA; Blaylock RC
    Ann Clin Lab Sci; 1992; 22(6):417-22. PubMed ID: 1456732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of a copper-chelating peptide on the anticancer activity of anthraquinones].
    Morier-Teissier E
    J Pharm Belg; 1990; 45(6):347-54. PubMed ID: 2086758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro study of copper and copper chelators on the crayfish stretch receptor.
    Tan KS; Roth SH
    Neuropharmacology; 1984 Jun; 23(6):683-9. PubMed ID: 6087188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide.
    Multhaup G; Ruppert T; Schlicksupp A; Hesse L; Bill E; Pipkorn R; Masters CL; Beyreuther K
    Biochemistry; 1998 May; 37(20):7224-30. PubMed ID: 9585534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron chelators for clinical use.
    Tilbrook GS; Hider RC
    Met Ions Biol Syst; 1998; 35():691-730. PubMed ID: 9444773
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid peroxidation in platelet concentrates: effects of irradiation and metal chelators.
    Knight JA; Blaylock RC; Searles DA
    Ann Clin Lab Sci; 1993; 23(5):333-9. PubMed ID: 8239480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chelators and iron ions on the production and degradation of H2O2 by beta-amyloid-copper complexes.
    Deraeve C; Pitie M; Meunier B
    J Inorg Biochem; 2006 Dec; 100(12):2117-26. PubMed ID: 17011628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the antidotal efficacy of polyamincarboxylic acids (CDTA and DTPA) with time after acute zinc poisoning.
    Llobet JM; Colomina MT; Domingo JL; Corbella J
    Vet Hum Toxicol; 1989 Feb; 31(1):25-8. PubMed ID: 2496518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of cysteine and homocysteine by bovine albumin.
    Gabaldon M
    Arch Biochem Biophys; 2004 Nov; 431(2):178-88. PubMed ID: 15488466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.
    Durbin PW
    Health Phys; 2008 Nov; 95(5):465-92. PubMed ID: 18849679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess.
    Irtelli B; Petrucci WA; Navari-Izzo F
    J Exp Bot; 2009; 60(1):269-77. PubMed ID: 19033552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.