BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21110019)

  • 1. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.
    Díaz-González M; Vidal T; Tzanov T
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1693-700. PubMed ID: 21110019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds.
    Bourbonnais R; Leech D; Paice MG
    Biochim Biophys Acta; 1998 Mar; 1379(3):381-90. PubMed ID: 9545600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel laccase redox mediators: spectral, electrochemical, and kinetic properties.
    Shleev SV; Khan IG; Gazaryan IG; Morozova OV; Yaropolov AI
    Appl Biochem Biotechnol; 2003 Dec; 111(3):167-84. PubMed ID: 14665736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators.
    Leontievsky A; Myasoedova N; Pozdnyakova N; Golovleva L
    FEBS Lett; 1997 Aug; 413(3):446-8. PubMed ID: 9303553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent electrochemical characteristics of a phenolic and non-phenolic compound in the presence of laccase/ABTS system.
    Saha R; Mukhopadhyay M
    PLoS One; 2022; 17(9):e0275338. PubMed ID: 36170267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase.
    Jeon JR; Murugesan K; Kim YM; Kim EJ; Chang YS
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):783-90. PubMed ID: 18987855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach.
    González Arzola K; Polvillo O; Arias ME; Perestelo F; Carnicero A; González-Vila FJ; Falcón MA
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):141-50. PubMed ID: 17033774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing energy efficient lignin biomass processing - towards understanding mediator behaviour in ionic liquids.
    Eshtaya M; Ejigu A; Stephens G; Walsh DA; Chen GZ; Croft AK
    Faraday Discuss; 2016 Aug; 190():127-45. PubMed ID: 27228384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phelbia radiata.
    Lundell T; Hatakka A
    FEBS Lett; 1994 Jul; 348(3):291-6. PubMed ID: 8034057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases.
    Rosado T; Bernardo P; Koci K; Coelho AV; Robalo MP; Martins LO
    Bioresour Technol; 2012 Nov; 124():371-8. PubMed ID: 22995168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil.
    Cañas AI; Alcalde M; Plou F; Martínez MJ; Martínez AT; Camarero S
    Environ Sci Technol; 2007 Apr; 41(8):2964-71. PubMed ID: 17533865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer.
    Pan Y; Ma H; Huang L; Huang J; Liu Y; Huang Z; Li W; Yang J
    Enzyme Microb Technol; 2018 Dec; 119():17-23. PubMed ID: 30243382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial evaluation of laccase-mediator system in the oxidation of veratryl alcohol.
    Larson TM; Anderson AM; Rich JO
    Biotechnol Lett; 2013 Feb; 35(2):225-31. PubMed ID: 23132490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemistry and kinetics of fungal laccase mediators.
    Shumakovich GP; Shleev SV; Morozova OV; Khohlov PS; Gazaryan IG; Yaropolov AI
    Bioelectrochemistry; 2006 Sep; 69(1):16-24. PubMed ID: 16318928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation.
    Pang R; Li M; Zhang C
    Talanta; 2015 Jan; 131():38-45. PubMed ID: 25281070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkylphenol oxidation with a laccase from a white-rot fungus: effects of culture induction and of ABTS used as a mediator.
    Farnet AM; Chevremont AC; Gil G; Gastaldi S; Ferre E
    Chemosphere; 2011 Jan; 82(2):284-9. PubMed ID: 20980040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.