These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21110541)

  • 61. Previous exposure to intact speech increases intelligibility of its digitally degraded counterpart as a function of stimulus complexity.
    Hakonen M; May PJC; Alho J; Alku P; Jokinen E; Jääskeläinen IP; Tiitinen H
    Neuroimage; 2016 Jan; 125():131-143. PubMed ID: 26477651
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The ability of listeners to use recovered envelope cues from speech fine structure.
    Gilbert G; Lorenzi C
    J Acoust Soc Am; 2006 Apr; 119(4):2438-44. PubMed ID: 16642856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-rate envelope information in many channels provides resistance to reduction of speech intelligibility produced by multi-channel fast-acting compression.
    Stone MA; Füllgrabe C; Moore BC
    J Acoust Soc Am; 2009 Nov; 126(5):2155-8. PubMed ID: 19894794
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Band importance for sentences and words reexamined.
    Healy EW; Yoho SE; Apoux F
    J Acoust Soc Am; 2013 Jan; 133(1):463-73. PubMed ID: 23297918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Does training with amplitude modulated tones affect tone-vocoded speech perception?
    Casaponsa A; Sohoglu E; Moore DR; Füllgrabe C; Molloy K; Amitay S
    PLoS One; 2019; 14(12):e0226288. PubMed ID: 31881550
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Consonant identification using temporal fine structure and recovered envelope cues.
    Swaminathan J; Reed CM; Desloge JG; Braida LD; Delhorne LA
    J Acoust Soc Am; 2014 Apr; 135(4):2078-90. PubMed ID: 25235005
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Speech perception based on spectral peaks versus spectral shape.
    Hillenbrand JM; Houde RA; Gayvert RT
    J Acoust Soc Am; 2006 Jun; 119(6):4041-54. PubMed ID: 16838546
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simulation of an EAS implant with a hybrid vocoder.
    Seldran F; Thai-Van H; Truy E; Berger-Vachon C; Collet L; Gallego S; Seldran F; Beliaeff M
    Cochlear Implants Int; 2010 Jun; 11 Suppl 1():125-9. PubMed ID: 21756597
    [No Abstract]   [Full Text] [Related]  

  • 69. Effects of acoustic periodicity and intelligibility on the neural oscillations in response to speech.
    Steinmetzger K; Rosen S
    Neuropsychologia; 2017 Jan; 95():173-181. PubMed ID: 27939190
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Towards reconstructing intelligible speech from the human auditory cortex.
    Akbari H; Khalighinejad B; Herrero JL; Mehta AD; Mesgarani N
    Sci Rep; 2019 Jan; 9(1):874. PubMed ID: 30696881
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of spectral frequency range and separation on the perception of asynchronous speech.
    Healy EW; Bacon SP
    J Acoust Soc Am; 2007 Mar; 121(3):1691-700. PubMed ID: 17407905
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Phonemic restoration of interrupted locally time-reversed speech : Effects of segment duration and noise levels.
    Ueda K; Ciocca V
    Atten Percept Psychophys; 2021 Jul; 83(5):1928-1934. PubMed ID: 33851359
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Speech recognition with primarily temporal cues.
    Shannon RV; Zeng FG; Kamath V; Wygonski J; Ekelid M
    Science; 1995 Oct; 270(5234):303-4. PubMed ID: 7569981
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding dysrhythmic speech: When rhythm does not matter and learning does not happen.
    Borrie SA; Lansford KL; Barrett TS
    J Acoust Soc Am; 2018 May; 143(5):EL379. PubMed ID: 29857710
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Suppressed alpha oscillations predict intelligibility of speech and its acoustic details.
    Obleser J; Weisz N
    Cereb Cortex; 2012 Nov; 22(11):2466-77. PubMed ID: 22100354
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intelligibility of bandpass filtered speech: steepness of slopes required to eliminate transition band contributions.
    Warren RM; Bashford JA; Lenz PW
    J Acoust Soc Am; 2004 Mar; 115(3):1292-5. PubMed ID: 15058351
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Auditory "bubbles": Efficient classification of the spectrotemporal modulations essential for speech intelligibility.
    Venezia JH; Hickok G; Richards VM
    J Acoust Soc Am; 2016 Aug; 140(2):1072. PubMed ID: 27586738
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Auditory processing of the acoustic patterns of speech.
    Miller JD
    Arch Otolaryngol; 1984 Mar; 110(3):154-9. PubMed ID: 6704028
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The importance of temporal-fine structure to perceive time-compressed speech with and without the restoration of the syllabic rhythm.
    Gransier R; Peeters S; Wouters J
    Sci Rep; 2023 Feb; 13(1):2874. PubMed ID: 36806145
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Checkerboard speech vs interrupted speech: Effects of spectrotemporal segmentation on intelligibility.
    Ueda K; Kawakami R; Takeichi H
    JASA Express Lett; 2021 Jul; 1(7):075204. PubMed ID: 36154646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.