BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21110569)

  • 1. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.
    Lallart M; Guyomar D; Richard C; Petit L
    J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.
    Lallart M; Garbuio L; Petit L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.
    Xue H; Hu Y; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery.
    Hu Y; Xue H; Hu T; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.
    Badel A; Benayad A; Lefeuvre E; Lebrun L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):673-84. PubMed ID: 16615571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting.
    Lallart M; Garbuio L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):281-91. PubMed ID: 20178894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
    Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M
    J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers.
    Yang Z; Guo S; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1380-6. PubMed ID: 18599426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.
    Kim H; Bedekar V; Islam RA; Lee WH; Leo D; Priya S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1900-5. PubMed ID: 18986886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Tiwari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2527-31. PubMed ID: 19049934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance.
    Xue H; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2092-6. PubMed ID: 18986906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.
    Ren B; Or SW; Wang F; Zhao X; Luo H; Li X; Zhang Q; Di W; Zhang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1419-25. PubMed ID: 20529716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent theoretical model for terahertz wave detector using a parametric process.
    Jiang CY; Liu JS; Sun B; Wang KJ; Li SX; Yao JQ
    Opt Express; 2010 Aug; 18(17):18180-9. PubMed ID: 20721207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
    Luo C; Hofmann HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.
    Hu H; Hu Y; Chen C; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2312-9. PubMed ID: 18986879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.
    Lee S; Youn BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Njuguna J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.