These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 21110569)
1. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices. Lallart M; Guyomar D; Richard C; Petit L J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569 [TBL] [Abstract][Full Text] [Related]
2. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. Lallart M; Garbuio L; Petit L; Richard C; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861 [TBL] [Abstract][Full Text] [Related]
3. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. Xue H; Hu Y; Wang QM IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2104-8. PubMed ID: 18986908 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. Hu Y; Xue H; Hu T; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321 [TBL] [Abstract][Full Text] [Related]
5. Single crystals and nonlinear process for outstanding vibration-powered electrical generators. Badel A; Benayad A; Lefeuvre E; Lebrun L; Richard C; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):673-84. PubMed ID: 16615571 [TBL] [Abstract][Full Text] [Related]
6. Thermoacoustic power conversion using a piezoelectric transducer. Jensen C; Raspet R J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205 [TBL] [Abstract][Full Text] [Related]
7. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting. Lallart M; Garbuio L; Richard C; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):281-91. PubMed ID: 20178894 [TBL] [Abstract][Full Text] [Related]
8. Acoustic energy harvesting using an electromechanical Helmholtz resonator. Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006 [TBL] [Abstract][Full Text] [Related]
9. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers. Yang Z; Guo S; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1380-6. PubMed ID: 18599426 [TBL] [Abstract][Full Text] [Related]
10. Laser-machined piezoelectric cantilevers for mechanical energy harvesting. Kim H; Bedekar V; Islam RA; Lee WH; Leo D; Priya S IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1900-5. PubMed ID: 18986886 [TBL] [Abstract][Full Text] [Related]
11. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Tiwari A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers. Yang Z; Yang J; Hu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2527-31. PubMed ID: 19049934 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. Xue H; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2092-6. PubMed ID: 18986906 [TBL] [Abstract][Full Text] [Related]
14. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. Ren B; Or SW; Wang F; Zhao X; Luo H; Li X; Zhang Q; Di W; Zhang Y IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1419-25. PubMed ID: 20529716 [TBL] [Abstract][Full Text] [Related]
15. Time-dependent theoretical model for terahertz wave detector using a parametric process. Jiang CY; Liu JS; Sun B; Wang KJ; Li SX; Yao JQ Opt Express; 2010 Aug; 18(17):18180-9. PubMed ID: 20721207 [TBL] [Abstract][Full Text] [Related]
16. Wideband energy harvesting for piezoelectric devices with linear resonant behavior. Luo C; Hofmann HF IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014 [TBL] [Abstract][Full Text] [Related]
17. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall. Hu H; Hu Y; Chen C; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2312-9. PubMed ID: 18986879 [TBL] [Abstract][Full Text] [Related]
18. Design and characterization of a high-power ultrasound driver with ultralow-output impedance. Lewis GK; Olbricht WL Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of retroreflective transdermal optical wireless communication. Gil Y; Rotter N; Arnon S Appl Opt; 2012 Jun; 51(18):4232-9. PubMed ID: 22722303 [TBL] [Abstract][Full Text] [Related]
20. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. Lee S; Youn BD IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):629-45. PubMed ID: 21429855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]