BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21111032)

  • 1. Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse.
    Wisor JP; Clegern WC
    Neurosci Lett; 2011 Mar; 490(3):165-9. PubMed ID: 21111032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of the first sleep cycle.
    Gillberg M; Akerstedt T
    Sleep; 1991 Apr; 14(2):147-54. PubMed ID: 1866528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortistatin promotes and negatively correlates with slow-wave sleep.
    Bourgin P; Fabre V; Huitrón-Reséndiz S; Henriksen SJ; Prospero-Garcia O; Criado JR; de Lecea L
    Eur J Neurosci; 2007 Aug; 26(3):729-38. PubMed ID: 17686045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From slow waves to sleep homeostasis: new perspectives.
    Borbély AA
    Arch Ital Biol; 2001 Feb; 139(1-2):53-61. PubMed ID: 11256187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep and sleep homeostasis in constant darkness in the rat.
    Deboer T
    J Sleep Res; 2009 Sep; 18(3):357-64. PubMed ID: 19552704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds.
    Rattenborg NC; Martinez-Gonzalez D; Lesku JA
    Neurosci Biobehav Rev; 2009 Mar; 33(3):253-70. PubMed ID: 18789355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness.
    Thakkar MM; Engemann SC; Walsh KM; Sahota PK
    Neuroscience; 2008 Jun; 153(4):875-80. PubMed ID: 18440150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice.
    Vyazovskiy VV; Kopp C; Bösch G; Tobler I
    Neuropharmacology; 2005 Apr; 48(5):617-26. PubMed ID: 15814097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDMA treatment 6 months earlier attenuates the effects of CP-94,253, a 5-HT1B receptor agonist, on motor control but not sleep inhibition.
    Gyongyosi N; Balogh B; Kirilly E; Kitka T; Kantor S; Bagdy G
    Brain Res; 2008 Sep; 1231():34-46. PubMed ID: 18638459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow wave activity during sleep: functional and therapeutic implications.
    Greene RW; Frank MG
    Neuroscientist; 2010 Dec; 16(6):618-33. PubMed ID: 20921564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The disappearing slow wave activity of hibernators.
    Larkin JE; Heller CH
    Sleep Res Online; 1998; 1(2):96-101. PubMed ID: 11382864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus).
    Lesku JA; Bark RJ; Martinez-Gonzalez D; Rattenborg NC; Amlaner CJ; Lima SL
    Behav Brain Res; 2008 Jun; 189(2):298-305. PubMed ID: 18313152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss.
    Wisor JP; Schmidt MA; Clegern WC
    Sleep; 2011 Mar; 34(3):261-72. PubMed ID: 21358843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.