These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 2111112)
21. CO2-dependent fermentation of phenol to acetate, butyrate and benzoate by an anaerobic, pasteurised culture. Karlsson A; Ejlertsson J; Svensson BH Arch Microbiol; 2000; 173(5-6):398-402. PubMed ID: 10896220 [TBL] [Abstract][Full Text] [Related]
22. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste. Hoyos-Hernandez C; Hoffmann M; Guenne A; Mazeas L Chemosphere; 2014 Feb; 97():115-9. PubMed ID: 24238916 [TBL] [Abstract][Full Text] [Related]
23. [Study on biodegradation of 2,4-DCP by anaerobic sludge acclimated by mixed mono-chlorphenols]. Zhang W; Chen L; Ji JP; Xia SQ Huan Jing Ke Xue; 2007 Jun; 28(6):1252-7. PubMed ID: 17674731 [TBL] [Abstract][Full Text] [Related]
24. Anaerobic biodegradation of phenolic compounds in digested sludge. Boyd SA; Shelton DR; Berry D; Tiedje JM Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908 [TBL] [Abstract][Full Text] [Related]
25. Combination of hydrodechlorination and biodegradation for the abatement of chlorophenols. Zhou S; Jin X; Sun F; Zhou H; Yang C; Xia C Water Sci Technol; 2012; 65(4):780-6. PubMed ID: 22277240 [TBL] [Abstract][Full Text] [Related]
26. Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. Zhang C; Suzuki D; Li Z; Ye L; Katayama A J Biosci Bioeng; 2012 Nov; 114(5):512-7. PubMed ID: 22743203 [TBL] [Abstract][Full Text] [Related]
27. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Boyd SA; Shelton DR Appl Environ Microbiol; 1984 Feb; 47(2):272-7. PubMed ID: 6712208 [TBL] [Abstract][Full Text] [Related]
28. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. Bae HS; Yamagishi T; Suwa Y Microbiology (Reading); 2002 Jan; 148(Pt 1):221-227. PubMed ID: 11782514 [TBL] [Abstract][Full Text] [Related]
29. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Loh KC; Wang SJ Biodegradation; 1997-1998; 8(5):329-38. PubMed ID: 15765612 [TBL] [Abstract][Full Text] [Related]
30. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. Zhang Z; Cissoko N; Wo J; Xu X J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044 [TBL] [Abstract][Full Text] [Related]
31. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Zhang Z; Shen Q; Cissoko N; Wo J; Xu X J Hazard Mater; 2010 Oct; 182(1-3):252-8. PubMed ID: 20619538 [TBL] [Abstract][Full Text] [Related]
32. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1. Wang Q; Li Y; Li J; Wang Y; Wang C; Wang P Environ Sci Pollut Res Int; 2015 Jan; 22(1):565-73. PubMed ID: 25091164 [TBL] [Abstract][Full Text] [Related]
33. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Winfrey MR; Zeikus JG Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807 [TBL] [Abstract][Full Text] [Related]
34. Comparison of UASB and EGSB performance on the anaerobic biodegradation of 2,4-dichlorophenol. Puyol D; Mohedano AF; Sanz JL; RodrÃguez JJ Chemosphere; 2009 Aug; 76(9):1192-8. PubMed ID: 19577792 [TBL] [Abstract][Full Text] [Related]
35. Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Wang SJ; Loh KC Biodegradation; 2001; 12(3):189-99. PubMed ID: 11826900 [TBL] [Abstract][Full Text] [Related]
36. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP. Sahinkaya E; Dilek FB J Environ Manage; 2007 Jun; 83(4):427-36. PubMed ID: 16842902 [TBL] [Abstract][Full Text] [Related]
37. Dechlorination of 2,4-dichlorophenol by Fe/Ni nanoparticles: the pathway and the effect of pH and the Ni mass ratio. Liu L; Ruan X; Liu H; Fan X; Dong J Environ Technol; 2023 Oct; 44(24):3676-3684. PubMed ID: 35442165 [No Abstract] [Full Text] [Related]
38. Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. Warner KA; Gilmour CC; Capone DG FEMS Microbiol Ecol; 2002 May; 40(2):159-65. PubMed ID: 19709223 [TBL] [Abstract][Full Text] [Related]
39. Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates. Hu Z; Ferraina RA; Ericson JF; Smets BF Water Res; 2005 Sep; 39(15):3501-10. PubMed ID: 16051311 [TBL] [Abstract][Full Text] [Related]
40. Limited degradation of chlorophenols by anaerobic sludge granules. Mohn WW; Kennedy KJ Appl Environ Microbiol; 1992 Jul; 58(7):2131-6. PubMed ID: 1637153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]