BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21111202)

  • 1. Spinal interneurons providing input to the final common path during locomotion.
    Brownstone RM; Bui TV
    Prog Brain Res; 2010; 187():81-95. PubMed ID: 21111202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Insights into the Rhythmogenic Core of the Locomotor CPG.
    Rancic V; Gosgnach S
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separate microcircuit modules of distinct v2a interneurons and motoneurons control the speed of locomotion.
    Ampatzis K; Song J; Ausborn J; El Manira A
    Neuron; 2014 Aug; 83(4):934-43. PubMed ID: 25123308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional distribution of putative rhythm-generating and pattern-forming components of the mammalian locomotor CPG.
    Griener A; Dyck J; Gosgnach S
    Neuroscience; 2013 Oct; 250():644-50. PubMed ID: 23933310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory modulation of locomotor-like membrane oscillations in Hb9-expressing interneurons.
    Hinckley CA; Wiesner EP; Mentis GZ; Titus DJ; Ziskind-Conhaim L
    J Neurophysiol; 2010 Jun; 103(6):3407-23. PubMed ID: 20393069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion.
    Miles GB; Hartley R; Todd AJ; Brownstone RM
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2448-53. PubMed ID: 17287343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal substrates for state-dependent changes in coordination between motoneuron pools during fictive locomotion in the lamprey spinal cord.
    Mentel T; Cangiano L; Grillner S; Büschges A
    J Neurosci; 2008 Jan; 28(4):868-79. PubMed ID: 18216195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
    Kwan AC; Dietz SB; Webb WW; Harris-Warrick RM
    J Neurosci; 2009 Sep; 29(37):11601-13. PubMed ID: 19759307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothalamic Pomc Neurons Innervate the Spinal Cord and Modulate the Excitability of Premotor Circuits.
    Reinoß P; Ciglieri E; Minére M; Bremser S; Klein A; Löhr H; Fuller PM; Büschges A; Kloppenburg P; Fenselau H; Hammerschmidt M
    Curr Biol; 2020 Dec; 30(23):4579-4593.e7. PubMed ID: 32976803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of V2-derived interneurons in the adult mouse spinal cord.
    Al-Mosawie A; Wilson JM; Brownstone RM
    Eur J Neurosci; 2007 Dec; 26(11):3003-15. PubMed ID: 18028108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis.
    Brownstone RM; Wilson JM
    Brain Res Rev; 2008 Jan; 57(1):64-76. PubMed ID: 17905441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish.
    Menelaou E; McLean DL
    Nat Commun; 2019 Sep; 10(1):4197. PubMed ID: 31519892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromodulation of Spinal Locomotor Networks in Rodents.
    Diaz-Ríos M; Guertin PA; Rivera-Oliver M
    Curr Pharm Des; 2017; 23(12):1741-1752. PubMed ID: 28120724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Jovanovic K; Aoyagi Y; Bennett DJ; Han Y; Stein RB
    Exp Brain Res; 2002 Jul; 145(2):190-8. PubMed ID: 12110959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications.
    Fetcho JR; McLean DL
    Ann N Y Acad Sci; 2010 Jun; 1198():94-104. PubMed ID: 20536924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.