These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 21111202)

  • 61. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK; Lansner A; Grillner S; Kotaleski JH
    Biol Cybern; 2007 Feb; 96(2):229-43. PubMed ID: 17180687
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Locomotor circuits in the mammalian spinal cord.
    Kiehn O
    Annu Rev Neurosci; 2006; 29():279-306. PubMed ID: 16776587
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synaptic integration of rhythmogenic neurons in the locomotor circuitry: the case of Hb9 interneurons.
    Ziskind-Conhaim L; Mentis GZ; Wiesner EP; Titus DJ
    Ann N Y Acad Sci; 2010 Jun; 1198():72-84. PubMed ID: 20536922
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic dissection of rhythmic motor networks in mice.
    Grossmann KS; Giraudin A; Britz O; Zhang J; Goulding M
    Prog Brain Res; 2010; 187():19-37. PubMed ID: 21111198
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Measured motion: searching for simplicity in spinal locomotor networks.
    Grillner S; Jessell TM
    Curr Opin Neurobiol; 2009 Dec; 19(6):572-86. PubMed ID: 19896834
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plasticity of interneuronal networks of the functionally isolated human spinal cord.
    Harkema SJ
    Brain Res Rev; 2008 Jan; 57(1):255-64. PubMed ID: 18042493
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Differential modulation of disynaptic cutaneous inhibition and excitation in ankle flexor motoneurons during fictive locomotion.
    Degtyarenko AM; Simon ES; Burke RE
    J Neurophysiol; 1996 Nov; 76(5):2972-85. PubMed ID: 8930248
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG.
    Burke RE; Degtyarenko AM; Simon ES
    J Neurophysiol; 2001 Jul; 86(1):447-62. PubMed ID: 11431524
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stimulus time-locked responses of motoneurons during forelimb fictive locomotion evoked by repetitive stimulation of the lateral funiculus.
    Kinoshita M; Yamaguchi T
    Brain Res; 2001 Jun; 904(1):31-42. PubMed ID: 11516409
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Roles of high-voltage-activated calcium channel subtypes in a vertebrate spinal locomotor network.
    Büschges A; Wikström MA; Grillner S; El Manira A
    J Neurophysiol; 2000 Dec; 84(6):2758-66. PubMed ID: 11110806
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regenerated interneurons integrate into locomotor circuitry following spinal cord injury.
    Vasudevan D; Liu YC; Barrios JP; Wheeler MK; Douglass AD; Dorsky RI
    Exp Neurol; 2021 Aug; 342():113737. PubMed ID: 33957107
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anatomical organization of motoneurons and interneurons in the mudpuppy (Necturus maculosus) brachial spinal cord: the neural substrate for central pattern generation.
    Jovanovic K; Burke RE
    Can J Physiol Pharmacol; 2004; 82(8-9):628-36. PubMed ID: 15523520
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Endocannabinoid signaling in the spinal locomotor circuitry.
    El Manira A; Kyriakatos A; Nanou E; Mahmood R
    Brain Res Rev; 2008 Jan; 57(1):29-36. PubMed ID: 17719648
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuromodulation via conditional release of endocannabinoids in the spinal locomotor network.
    Kettunen P; Kyriakatos A; Hallén K; El Manira A
    Neuron; 2005 Jan; 45(1):95-104. PubMed ID: 15629705
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish.
    Berg EM; Björnfors ER; Pallucchi I; Picton LD; El Manira A
    Front Neural Circuits; 2018; 12():73. PubMed ID: 30271327
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transmitter-phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice.
    Restrepo CE; Lundfald L; Szabó G; Erdélyi F; Zeilhofer HU; Glover JC; Kiehn O
    J Comp Neurol; 2009 Nov; 517(2):177-92. PubMed ID: 19731323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.