These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21111204)

  • 1. Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals.
    Del Negro CA; Hayes JA; Pace RW; Brush BR; Teruyama R; Feldman JL
    Prog Brain Res; 2010; 187():111-36. PubMed ID: 21111204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory rhythm: an emergent network property?
    Del Negro CA; Morgado-Valle C; Feldman JL
    Neuron; 2002 May; 34(5):821-30. PubMed ID: 12062027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?
    Johnson SM; Wiegel LM; Majewski DJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R901-10. PubMed ID: 17522127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia.
    Peña F; Parkis MA; Tryba AK; Ramirez JM
    Neuron; 2004 Jul; 43(1):105-17. PubMed ID: 15233921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of riluzole on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat.
    Lin ST; Onimaru H
    Neurosci Res; 2015 May; 94():28-36. PubMed ID: 25498952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbenoxolone induced depression of rhythmogenesis in the pre-Bötzinger Complex.
    Elsen FP; Shields EJ; Roe MT; Vandam RJ; Kelty JD
    BMC Neurosci; 2008 May; 9():46. PubMed ID: 18500991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-activated potassium currents differentially modulate respiratory rhythm generation.
    Zavala-Tecuapetla C; Aguileta MA; Lopez-Guerrero JJ; González-Marín MC; Peña F
    Eur J Neurosci; 2008 Jun; 27(11):2871-84. PubMed ID: 18445052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of bursting in respiratory pacemaker neurons.
    Tryba AK; Peña F; Ramirez JM
    J Neurosci; 2003 Apr; 23(8):3538-46. PubMed ID: 12716963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic inhibition in the isolated respiratory network of neonatal rats.
    Brockhaus J; Ballanyi K
    Eur J Neurosci; 1998 Dec; 10(12):3823-39. PubMed ID: 9875360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo.
    Peña F; Aguileta MA
    Neurosci Lett; 2007 Mar; 415(3):288-93. PubMed ID: 17276002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation.
    Onimaru H; Arata A; Homma I
    Jpn J Physiol; 1997 Oct; 47(5):385-403. PubMed ID: 9504127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory rhythms generated in the lamprey rhombencephalon.
    Martel B; Guimond JC; Gariépy JF; Gravel J; Auclair F; Kolta A; Lund JP; Dubuc R
    Neuroscience; 2007 Aug; 148(1):279-93. PubMed ID: 17618060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat.
    Johnson SM; Smith JC; Funk GD; Feldman JL
    J Neurophysiol; 1994 Dec; 72(6):2598-608. PubMed ID: 7897477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal pacemaker for breathing visualized in vitro.
    Koshiya N; Smith JC
    Nature; 1999 Jul; 400(6742):360-3. PubMed ID: 10432113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons.
    Viemari JC; Ramirez JM
    J Neurophysiol; 2006 Apr; 95(4):2070-82. PubMed ID: 16394066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.
    Li WC; Roberts A; Soffe SR
    J Neurosci; 2010 Dec; 30(49):16609-20. PubMed ID: 21148000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors.
    Tryba AK; Peña F; Ramirez JM
    J Neurosci; 2006 Mar; 26(10):2623-34. PubMed ID: 16525041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background sodium current underlying respiratory rhythm regularity.
    Chevalier M; Ben-Mabrouk F; Tryba AK
    Eur J Neurosci; 2008 Dec; 28(12):2423-33. PubMed ID: 19032590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity.
    Ben-Mabrouk F; Tryba AK
    Eur J Neurosci; 2010 Apr; 31(7):1219-32. PubMed ID: 20345918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of NMDA receptors to network recruitment and rhythm generation in spinal cord cultures.
    Legrand JC; Darbon P; Streit J
    Eur J Neurosci; 2004 Feb; 19(3):521-32. PubMed ID: 14984403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.