These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21111502)

  • 1. A probabilistic approach to determine thermal process setting parameters: application for commercial sterility of products.
    Membré JM; van Zuijlen A
    Int J Food Microbiol; 2011 Jan; 144(3):413-20. PubMed ID: 21111502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.
    Pujol L; Johnson NB; Magras C; Albert I; Membré JM
    Int J Food Microbiol; 2015 Oct; 211():6-17. PubMed ID: 26143288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry.
    Pujol L; Albert I; Johnson NB; Membré JM
    Int J Food Microbiol; 2013 Apr; 162(3):283-96. PubMed ID: 23454820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products.
    Oomes SJ; van Zuijlen AC; Hehenkamp JO; Witsenboer H; van der Vossen JM; Brul S
    Int J Food Microbiol; 2007 Nov; 120(1-2):85-94. PubMed ID: 17644202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A standard set of testing methods reliably enumerates spores across commercial milk powders.
    Murphy SI; Kent D; Skeens J; Wiedmann M; Martin NH
    J Dairy Sci; 2021 Mar; 104(3):2615-2631. PubMed ID: 33358815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll.
    Byrne B; Dunne G; Bolton DJ
    Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin.
    Gao Y; Qiu W; Wu D; Fu Q
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1083-95. PubMed ID: 21340537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spore survival during batch dry rendering of abattoir waste.
    Lowry PD; Fernando T; Gill CO
    Appl Environ Microbiol; 1979 Aug; 38(2):335-6. PubMed ID: 117753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release.
    Kort R; O'Brien AC; van Stokkum IH; Oomes SJ; Crielaard W; Hellingwerf KJ; Brul S
    Appl Environ Microbiol; 2005 Jul; 71(7):3556-64. PubMed ID: 16000762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.
    Pujol L; Albert I; Magras C; Johnson NB; Membré JM
    Int J Food Microbiol; 2015 Jan; 192():124-41. PubMed ID: 25440556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500 MPa.
    Reineke K; Mathys A; Knorr D
    J Food Sci; 2011 Apr; 76(3):M189-97. PubMed ID: 21535843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of superheated steam on Geobacillus stearothermophilus spore viability.
    Head DS; Cenkowski S; Holley R; Blank G
    J Appl Microbiol; 2008 Apr; 104(4):1213-20. PubMed ID: 18028361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of inactivation kinetics for a four-strain composite of Salmonella Enteritidis and Oranienburg in commercial liquid egg yolk.
    Jordan JS; Gurtler JB; Marks HM; Jones DR; Shaw WK
    Food Microbiol; 2011 Feb; 28(1):67-75. PubMed ID: 21056777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some microbiological aspects of inedible rendering processes.
    Hansen PI; Olgaard K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Dec; 180(1):3-20. PubMed ID: 6441385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some biological and physical factors in dry heat sterilization: a general review.
    Bruch CW
    Life Sci Space Res; 1964; 2():357-71. PubMed ID: 11883444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.