BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21111581)

  • 1. Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite.
    Fan Y; Lu HT; Liu JH; Yang CP; Jing QS; Zhang YX; Yang XK; Huang KJ
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):78-82. PubMed ID: 21111581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing.
    How GT; Pandikumar A; Ming HN; Ngee LH
    Sci Rep; 2014 May; 4():5044. PubMed ID: 24853929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel hybrid construction of MnMoO
    Venkatesh K; Rajakumaran R; Chen SM; Karuppiah C; Yang CC; Ramaraj SK; Ali MA; Al-Hemaid FMA; El-Shikh MS; Almunqedhi BMA
    Chemosphere; 2021 Jun; 273():129665. PubMed ID: 33508687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Synthesis of Fe-Doped, Algae Residue-Derived Carbon Aerogels for Electrochemical Dopamine Biosensors.
    Wu H; Wen Q; Luan X; Yang W; Guo L; Wei G
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Prototyping of a High Sensitivity Graphene Based Glucose Sensor Strip.
    Tehrani F; Reiner L; Bavarian B
    PLoS One; 2015; 10(12):e0145036. PubMed ID: 26678700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine.
    Thirumalraj B; Rajkumar C; Chen SM; Palanisamy S
    Sci Rep; 2017 Jan; 7():41213. PubMed ID: 28128225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing.
    Sharma P; Tuteja SK; Bhalla V; Shekhawat G; Dravid VP; Suri CR
    Biosens Bioelectron; 2013 Jan; 39(1):99-105. PubMed ID: 22884654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-optical behaviour of CuFe
    Verma R; Singh KR; Verma R; Singh J
    Luminescence; 2023 Jul; 38(7):1393-1404. PubMed ID: 36918255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.
    Das G; Yoon HH
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):55-66. PubMed ID: 26346240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Electrochemical Sensitivity in Anticancer Drug Quantification through ZnS@CNS Nanosheets: Synthesis via Accelerated Sonochemical Methodology.
    Chen PY; Keerthi Reddy T; Rajaji U; Alothman AA; Govindasamy M
    Ultrason Sonochem; 2024 May; 105():106858. PubMed ID: 38564910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of L-Tryptophan Electrochemical Oxidation with a Graphene-Modified Electrode.
    Pogacean F; Varodi C; Coros M; Kacso I; Radu T; Cozar BI; Mirel V; Pruneanu S
    Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33525714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Overpotential Amperometric Sensor Using Yb
    Ahmed J; Faisal M; Algethami JS; Alsaiari MA; Alsareii SA; Harraz FA
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Synthesis of FeS and Investigation on Electrochemical Sensing Toward Neuroprotector.
    Mathew MZ; Celshia S; Selvamani M; Suresh V; Hussein MA
    Cureus; 2024 Apr; 16(4):e58709. PubMed ID: 38779263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of NiMoO4/nanographite nanocomposite electrodes using flexible graphite substrate for aqueous hybrid supercapacitors.
    Arshadi Rastabi S; Sarraf-Mamoory R; Razaz G; Blomquist N; Hummelgård M; Olin H
    PLoS One; 2021; 16(7):e0254023. PubMed ID: 34214111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement the electrochemical conductivity of a modified reduced graphene oxide/calixarene screen-printed electrode using response surface methodology.
    Azman NZM; Zainal PNS; Alang Ahmad SA
    PLoS One; 2020; 15(6):e0234148. PubMed ID: 32502185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon paste electrodes made from different carbonaceous materials: application in the study of antioxidants.
    Apetrei C; Apetrei IM; De Saja JA; Rodriguez-Mendez ML
    Sensors (Basel); 2011; 11(2):1328-44. PubMed ID: 22319354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Principles for Precise Engineering of Sensitivity in Graphene Electrochemical Sensors.
    Wu T; Alharbi A; Kiani R; Shahrjerdi D
    Adv Mater; 2019 Feb; 31(6):e1805752. PubMed ID: 30548684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative Graphene-Based Nanocomposites for Improvement of Electrochemical Sensors: Synthesis, Characterization, and Applications.
    Pengsomjit U; Alabdo F; Karuwan C; Kraiya C; Alahmad W; Ozkan SA
    Crit Rev Anal Chem; 2024 Apr; ():1-19. PubMed ID: 38656227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of the porphyrin monomer on the surface of Fe/graphene material: a novel sensing material for the detection of chloramphenicol antibiotic in aqueous solution.
    Nguyen QTX; Khong HM; La DD; Dang DT
    Chemphyschem; 2024 May; ():e202400355. PubMed ID: 38749914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdAl
    Pirsaheb M; Seifi H; Dawi EA; Gholami T; Salavati-Niasari M
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21370-21379. PubMed ID: 38388980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.