These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 2111181)
41. On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase. Schewe T; Albracht SP; Ludwig P Biochim Biophys Acta; 1981 Jul; 636(2):210-7. PubMed ID: 6269601 [TBL] [Abstract][Full Text] [Related]
42. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria. Frei B; Winterhalter KH; Richter C Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856 [TBL] [Abstract][Full Text] [Related]
43. [The use of certain new O-benzoquinone derivatives as acceptor substrates in enzymatic oxidation of NADH]. Volod'ko LV; Matusevich PA; Min'ko AA; Titovets EP Biokhimiia; 1977 Feb; 42(2):205-10. PubMed ID: 192345 [TBL] [Abstract][Full Text] [Related]
44. A comparison of the respiratory chain in particles from Paracoccus denitrificans and bovine heart mitochondria by EPR spectroscopy. Albracht SP; van Verseveld HW; Hagen WR; Kalkman ML Biochim Biophys Acta; 1980 Dec; 593(2):173-86. PubMed ID: 6263319 [TBL] [Abstract][Full Text] [Related]
45. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. I. Pre-steady-state kinetics with NADPH. Bakker PT; Albracht SP Biochim Biophys Acta; 1986 Jul; 850(3):413-22. PubMed ID: 3015206 [TBL] [Abstract][Full Text] [Related]
46. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Grivennikova VG; Maklashina EO; Gavrikova EV; Vinogradov AD Biochim Biophys Acta; 1997 Apr; 1319(2-3):223-32. PubMed ID: 9131045 [TBL] [Abstract][Full Text] [Related]
47. Lipid peroxidation and the reduction of ADP-Fe3+ chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria. Takeshige K; Takayanagi R; Minakami S Biochem J; 1980 Dec; 192(3):861-6. PubMed ID: 6786284 [TBL] [Abstract][Full Text] [Related]
48. Saturation kinetics of coenzyme Q in NADH oxidation: rate enhancement by incorporation of excess quinone. Fato R; Bernardo SD; Estornell E; Parentic Castelli G; Lenaz G Mol Aspects Med; 1997; 18 Suppl():S269-73. PubMed ID: 9266535 [TBL] [Abstract][Full Text] [Related]
49. [Mechanism of action of the inhibition of pyridine-nucleotide-dependent flavine enzymes using the systemic fungicide Dexon]. Müller W; Schewe T Acta Biol Med Ger; 1977; 36(7-8):967-80. PubMed ID: 417538 [TBL] [Abstract][Full Text] [Related]
50. [Hysteresis behavior of complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state]. Maklashina EO; Sled' VD; Vinogradov AD Biokhimiia; 1994 Jul; 59(7):946-57. PubMed ID: 7948420 [TBL] [Abstract][Full Text] [Related]
51. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme. Albracht SP; Bakker PT Biochim Biophys Acta; 1986 Jul; 850(3):423-8. PubMed ID: 3015207 [TBL] [Abstract][Full Text] [Related]
52. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines? Krueger MJ; Tan AK; Ackrell BA; Singer TP Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493 [TBL] [Abstract][Full Text] [Related]
53. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
54. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria. Kang D; Narabayashi H; Sata T; Takeshige K J Biochem; 1983 Oct; 94(4):1301-6. PubMed ID: 6317663 [TBL] [Abstract][Full Text] [Related]
56. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Ramsay RR; Salach JI; Singer TP Biochem Biophys Res Commun; 1986 Jan; 134(2):743-8. PubMed ID: 2868716 [TBL] [Abstract][Full Text] [Related]
57. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles. Galkin AS; Grivennikova VG; Vinogradov AD Biochemistry (Mosc); 2001 Apr; 66(4):435-43. PubMed ID: 11403652 [TBL] [Abstract][Full Text] [Related]
58. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Forsmark-Andrée P; Lee CP; Dallner G; Ernster L Free Radic Biol Med; 1997; 22(3):391-400. PubMed ID: 8981030 [TBL] [Abstract][Full Text] [Related]
59. New evidence for the dimeric nature of NADH:Q oxidoreductase in bovine-heart submitochondrial particles. van Belzen R; van Gaalen MC; Cuypers PA; Albracht SP Biochim Biophys Acta; 1990 Jun; 1017(2):152-9. PubMed ID: 2112409 [TBL] [Abstract][Full Text] [Related]
60. Inhibition of the mitochondrial bc1 complex by dibromothymoquinone. Degli Esposti M; Rugolo M; Lenaz G FEBS Lett; 1983 May; 156(1):15-9. PubMed ID: 6303849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]