These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21111857)

  • 1. Molecular imaging of the kidneys.
    Szabo Z; Alachkar N; Xia J; Mathews WB; Rabb H
    Semin Nucl Med; 2011 Jan; 41(1):20-8. PubMed ID: 21111857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future direction of renal positron emission tomography.
    Szabo Z; Xia J; Mathews WB; Brown PR
    Semin Nucl Med; 2006 Jan; 36(1):36-50. PubMed ID: 16356795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon.
    Toyama Y; Werner RA; Ruiz-Bedoya CA; Ordonez AA; Takase K; Lapa C; Jain SK; Pomper MG; Rowe SP; Higuchi T
    Theranostics; 2021; 11(12):6105-6119. PubMed ID: 33897902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review.
    Bouchelouche K; Oehr P
    J Urol; 2008 Jan; 179(1):34-45. PubMed ID: 17997425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiopharmaceuticals for renal positron emission tomography imaging.
    Szabo Z; Xia J; Mathews WB
    Semin Nucl Med; 2008 Jan; 38(1):20-31. PubMed ID: 18096461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of 3-fluoro-L-α-methyl-tyrosine (FAMT) by organic ion transporters explains renal background in [(18)F]FAMT positron emission tomography.
    Wei L; Tominaga H; Ohgaki R; Wiriyasermkul P; Hagiwara K; Okuda S; Kaira K; Kato Y; Oriuchi N; Nagamori S; Kanai Y
    J Pharmacol Sci; 2016 Feb; 130(2):101-9. PubMed ID: 26887331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic and static small-animal SPECT in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy.
    Melis M; de Swart J; de Visser M; Berndsen SC; Koelewijn S; Valkema R; Boerman OC; Krenning EP; de Jong M
    J Nucl Med; 2010 Dec; 51(12):1962-8. PubMed ID: 21078795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of
    Potemkin R; Strauch B; Kuwert T; Prante O; Maschauer S
    Mol Pharm; 2020 Mar; 17(3):933-943. PubMed ID: 32011889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PET Tracer for Renal Organic Cation Transporters, ¹¹C-Metformin: Radiosynthesis and Preclinical Proof-of-Concept Studies.
    Jakobsen S; Busk M; Jensen JB; Munk OL; Zois NE; Alstrup AK; Jessen N; Frøkiær J
    J Nucl Med; 2016 Apr; 57(4):615-21. PubMed ID: 26769859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults.
    Keramida G; James JM; Prescott MC; Peters AM
    Semin Nucl Med; 2015 Sep; 45(5):428-39. PubMed ID: 26278854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged renal parenchymal retention of 99mTc mercaptoacetyltriglycine after nephron-sparing surgery.
    Inoue Y; Kurimoto S; Kameyama S; Ohta N; Akahane M; Yoshikawa K; Yokoyama I; Minami M; Ohtomo K; Kitamura T
    Nucl Med Commun; 2004 May; 25(5):509-13. PubMed ID: 15100511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide.
    de Jong M; Barone R; Krenning E; Bernard B; Melis M; Visser T; Gekle M; Willnow TE; Walrand S; Jamar F; Pauwels S
    J Nucl Med; 2005 Oct; 46(10):1696-700. PubMed ID: 16204720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical four-compartment model to evaluate separate kidney technetium-99m-MAG3 kinetics in humans.
    Curti G; DeMartini D; Santaniello B; Taddei G; Fresco GF
    Kidney Int; 1998 Dec; 54(6):2029-36. PubMed ID: 9853268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal vascular transit time and tubular transit time dispersion for 99Tcm-MAG3.
    Russell CD; Japanwalla M; Khan S; Scott JW; Dubovsky EV
    Nucl Med Commun; 1997 Sep; 18(9):832-8. PubMed ID: 9352549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion.
    Green MA; Mathias CJ; Willis LR; Handa RK; Lacy JL; Miller MA; Hutchins GD
    Nucl Med Biol; 2007 Apr; 34(3):247-55. PubMed ID: 17383574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual kidney function after donor nephrectomy. Assessment by 99mTc-MAG3-clearance.
    Hamscho N; Wilhelm A; Döbert N; Menzel C; Gossmann J; Berner U; Zaplatnikov K; Scheuermann EH; Grünwald F
    Nuklearmedizin; 2005; 44(5):200-4. PubMed ID: 16395496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of technetium-99m MAG3 renal imaging in the diagnosis of acute tubular necrosis of native kidneys.
    Blaustein DA; Myint MM; Babu K; Avram MM; Chandramouli BS
    Clin Nucl Med; 2002 Mar; 27(3):165-8. PubMed ID: 11852301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positron emission tomography (PET) assessment of renal perfusion.
    Green MA; Hutchins GD
    Semin Nephrol; 2011 May; 31(3):291-9. PubMed ID: 21784278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.
    Grove KJ; Lareau NM; Voziyan PA; Zeng F; Harris RC; Hudson BG; Caprioli RM
    Kidney Int; 2018 Aug; 94(2):292-302. PubMed ID: 29779708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.