These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 21112209)
21. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. Gomes NC; Kosheleva IA; Abraham WR; Smalla K FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969 [TBL] [Abstract][Full Text] [Related]
22. Isolation, selection and biodegradation profile of phenol degrading bacteria from oil contaminated soil. Mohite BV; Pawar SP; Morankar A Bull Environ Contam Toxicol; 2011 Aug; 87(2):143-6. PubMed ID: 21643832 [TBL] [Abstract][Full Text] [Related]
23. Distribution and function of carbamate hydrolase genes cehA and mcd in soils: the distinct role of soil pH. Rousidou C; Karaiskos D; Myti D; Karanasios E; Karas PA; Tourna M; Tzortzakakis EA; Karpouzas DG FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27797966 [TBL] [Abstract][Full Text] [Related]
24. Biodegradation of alpha- and beta-endosulfan by soil bacteria. Hussain S; Arshad M; Saleem M; Khalid A Biodegradation; 2007 Dec; 18(6):731-40. PubMed ID: 17252313 [TBL] [Abstract][Full Text] [Related]
25. Biodegradation of 4-chloroaniline by bacteria enriched from soil. Vangnai AS; Petchkroh W FEMS Microbiol Lett; 2007 Mar; 268(2):209-16. PubMed ID: 17328747 [TBL] [Abstract][Full Text] [Related]
26. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Park W; Madsen EL Appl Microbiol Biotechnol; 2004 Dec; 66(2):209-16. PubMed ID: 15278309 [TBL] [Abstract][Full Text] [Related]
27. Role of soil pH in the development of enhanced biodegradation of fenamiphos. Singh BK; Walker A; Morgan JA; Wright DJ Appl Environ Microbiol; 2003 Dec; 69(12):7035-43. PubMed ID: 14660347 [TBL] [Abstract][Full Text] [Related]
28. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Zuo Z; Gong T; Che Y; Liu R; Xu P; Jiang H; Qiao C; Song C; Yang C Biodegradation; 2015 Jun; 26(3):223-33. PubMed ID: 25917649 [TBL] [Abstract][Full Text] [Related]
29. Isolation of a diphenylamine-degrading bacterium and characterization of its metabolic capacities, bioremediation and bioaugmentation potential. Perruchon C; Batianis C; Zouborlis S; Papadopoulou ES; Ntougias S; Vasileiadis S; Karpouzas DG Environ Sci Pollut Res Int; 2015 Dec; 22(24):19485-96. PubMed ID: 26260839 [TBL] [Abstract][Full Text] [Related]
30. Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Mohn WW; Mertens B; Neufeld JD; Verstraete W; de Lorenzo V Environ Microbiol; 2006 Jan; 8(1):60-8. PubMed ID: 16343322 [TBL] [Abstract][Full Text] [Related]
31. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Lei Y; Mulchandani A; Chen W Biotechnol Prog; 2005; 21(3):678-81. PubMed ID: 15932242 [TBL] [Abstract][Full Text] [Related]
32. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Díaz-Ramírez IJ; Ramírez-Saad H; Gutiérrez-Rojas M; Favela-Torres E Can J Microbiol; 2003 Dec; 49(12):755-61. PubMed ID: 15162200 [TBL] [Abstract][Full Text] [Related]
33. Utilization of dimethoate by wild type Pseudomonas putida from polluted sites in Iran. Nazarian A Pak J Biol Sci; 2007 Feb; 10(4):664-7. PubMed ID: 19069555 [TBL] [Abstract][Full Text] [Related]
34. Isolation of a member of Acinetobacter species involved in atrazine degradation. Singh P; Suri CR; Cameotra SS Biochem Biophys Res Commun; 2004 May; 317(3):697-702. PubMed ID: 15081396 [TBL] [Abstract][Full Text] [Related]
35. Hydrolysis of fenamiphos and its oxidation products by a soil bacterium in pure culture, soil and water. Megharaj M; Singh N; Kookana RS; Naidu R; Sethunathan N Appl Microbiol Biotechnol; 2003 May; 61(3):252-6. PubMed ID: 12698284 [TBL] [Abstract][Full Text] [Related]
36. Biodegradation of carbazole by newly isolated Acinetobacter spp. Singh GB; Gupta S; Srivastava S; Gupta N Bull Environ Contam Toxicol; 2011 Nov; 87(5):522-6. PubMed ID: 21833731 [TBL] [Abstract][Full Text] [Related]
37. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
38. Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. Karpouzas DG; Fotopoulou A; Menkissoglu-Spiroudi U; Singh BK FEMS Microbiol Ecol; 2005 Aug; 53(3):369-78. PubMed ID: 16329956 [TBL] [Abstract][Full Text] [Related]
39. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Fragoeiro S; Magan N Environ Microbiol; 2005 Mar; 7(3):348-55. PubMed ID: 15683395 [TBL] [Abstract][Full Text] [Related]
40. Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen. Kaech A; Egli T Syst Appl Microbiol; 2001 Jul; 24(2):252-61. PubMed ID: 11518329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]