BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 21112312)

  • 1. Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases.
    Nithianantharajah J; Hannan AJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):331-9. PubMed ID: 21112312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders.
    Nithianantharajah J; Hannan AJ
    Prog Neurobiol; 2009 Dec; 89(4):369-82. PubMed ID: 19819293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington's disease transgenic mice.
    Nithianantharajah J; Barkus C; Vijiaratnam N; Clement O; Hannan AJ
    Am J Geriatr Psychiatry; 2009 Mar; 17(3):196-209. PubMed ID: 19454847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms mediating pathological plasticity in Huntington's disease and Alzheimer's disease.
    Spires TL; Hannan AJ
    J Neurochem; 2007 Feb; 100(4):874-82. PubMed ID: 17217424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases.
    Gibrat C; Cicchetti F
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):380-9. PubMed ID: 21111020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of methylxanthines and adenosine receptors on neurodegeneration: human and experimental studies.
    Chen JF; Chern Y
    Handb Exp Pharmacol; 2011; (200):267-310. PubMed ID: 20859800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review of brain and cognitive reserve in Huntington's disease.
    Soloveva MV; Jamadar SD; Poudel G; Georgiou-Karistianis N
    Neurosci Biobehav Rev; 2018 May; 88():155-169. PubMed ID: 29535068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington's disease.
    Hannan AJ
    Acta Biochim Pol; 2004; 51(2):415-30. PubMed ID: 15218539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity.
    Hannan AJ
    Neuropathol Appl Neurobiol; 2014 Feb; 40(1):13-25. PubMed ID: 24354721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Brain training" improves cognitive performance and survival in a transgenic mouse model of Huntington's disease.
    Wood NI; Glynn D; Morton AJ
    Neurobiol Dis; 2011 Jun; 42(3):427-37. PubMed ID: 21324361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw.
    Spires TL; Hannan AJ
    FEBS J; 2005 May; 272(10):2347-61. PubMed ID: 15885086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nortriptyline delays disease onset in models of chronic neurodegeneration.
    Wang H; Guan Y; Wang X; Smith K; Cormier K; Zhu S; Stavrovskaya IG; Huo C; Ferrante RJ; Kristal BS; Friedlander RM
    Eur J Neurosci; 2007 Aug; 26(3):633-41. PubMed ID: 17686041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview.
    Mariani E; Polidori MC; Cherubini A; Mecocci P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 827(1):65-75. PubMed ID: 16183338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enriched environments, experience-dependent plasticity and disorders of the nervous system.
    Nithianantharajah J; Hannan AJ
    Nat Rev Neurosci; 2006 Sep; 7(9):697-709. PubMed ID: 16924259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models of Alzheimer's Parkinson's and Huntington's disease. A minireview.
    Antal A; Bodis-Wollner I
    Neurobiology (Bp); 1993; 1(2):101-22. PubMed ID: 8111350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of the study of neurodegenerative disorders to the understanding of human memory.
    Panegyres PK
    QJM; 2004 Sep; 97(9):555-67. PubMed ID: 15317924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic animal models of neurodegenerative diseases and their application to treatment development.
    Rockenstein E; Crews L; Masliah E
    Adv Drug Deliv Rev; 2007 Sep; 59(11):1093-102. PubMed ID: 17869376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of MRS to mouse models of neurodegenerative illness.
    Choi JK; Dedeoglu A; Jenkins BG
    NMR Biomed; 2007 May; 20(3):216-37. PubMed ID: 17451183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis.
    Dunkel P; Chai CL; Sperlágh B; Huleatt PB; Mátyus P
    Expert Opin Investig Drugs; 2012 Sep; 21(9):1267-308. PubMed ID: 22741814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases.
    Popovic N; Brundin P
    Int J Pharm; 2006 May; 314(2):120-6. PubMed ID: 16529886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.