BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2111233)

  • 1. Lipid peroxidation and covalent binding in the early functional impairment of liver Golgi apparatus by carbon tetrachloride.
    Poli G; Cottalasso D; Pronzato MA; Chiarpotto E; Biasi F; Corongiu FP; Marinari UM; Nanni G; Dianzani MU
    Cell Biochem Funct; 1990 Jan; 8(1):1-10. PubMed ID: 2111233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro evidence concerning the role of lipid peroxidation in the mechanism of hepatocyte death due to carbon tetrachloride.
    Biasi F; Albano E; Chiarpotto E; Corongiu FP; Pronzato MA; Marinari UM; Parola M; Dianzani MU; Poli G
    Cell Biochem Funct; 1991 Apr; 9(2):111-8. PubMed ID: 1934311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CCl4 poisoning on metabolism of dolichol in rat liver microsomes and Golgi apparatus.
    Pronzato MA; Cottalasso D; Domenicotti C; Tenca C; Traverso N; Nanni G; Marinari UM
    Free Radic Res Commun; 1990; 11(4-5):267-77. PubMed ID: 2096102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon tetrachloride-induced inhibition of hepatocyte lipoprotein secretion: functional impairment of Golgi apparatus in the early phases of such injury.
    Poli G; Chiarpotto E; Albano E; Cottalasso D; Nanni G; Marinari UM; Bassi AM; Dianzani MU
    Life Sci; 1985 Feb; 36(6):533-9. PubMed ID: 3968976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of carbon tetrachloride-induced lipid peroxidation and xenobiotic-metabolizing enzymes in rats fed browned yam flour diet.
    Farombi EO; Nwankwo JO; Emerole GO
    Afr J Med Med Sci; 2000 Jun; 29(2):127-32. PubMed ID: 11379443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of liver metabolism of 1,2-dibromoethane during simultaneous treatment with carbon tetrachloride.
    Chiarpotto E; Biasi F; Aragno M; Scavazza A; Danni O; Albano E; Poli G
    Cell Biochem Funct; 1993 Mar; 11(1):71-5. PubMed ID: 8453739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of CCl4-induced liver necrosis by the calcium chelator arsenazo III.
    de Ferreyra EC; Bernacchi AS; Villarruel MC; de Fenos OM; Castro JA
    Exp Mol Pathol; 1993 Jun; 58(3):194-204. PubMed ID: 8519346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of endogenous reduced glutathione through hepatic glutathione redox cycle to enhancement of hepatic lipid peroxidation with the development of acute liver injury in mice intoxicated with carbon tetrachloride.
    Nishida K; Ohta Y; Kongo M; Ishiguro I
    Res Commun Mol Pathol Pharmacol; 1996 Aug; 93(2):198-218. PubMed ID: 8884991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in lipoglycoprotein metabolism in toxic fatty liver].
    Barisione G; Fontana L; Cottalasso D; Domenicotti C; Pronzato MA; Nanni G
    Minerva Gastroenterol Dietol; 1993 Sep; 39(3):101-12. PubMed ID: 8286481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trifluopromazine late preventive effects on carbon tetrachloride-induced liver necrosis.
    de Ferreyra EC; Bernacchi AS; San Martin MF; Castro GD; Castro JA
    Exp Mol Pathol; 1995 Apr; 62(2):75-82. PubMed ID: 8549698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase.
    Chagoya de Sánchez V; Hernández-Muñoz R; Yáñez L; Vidrio S; Díaz-Muñoz M
    J Biochem Toxicol; 1995 Feb; 10(1):41-50. PubMed ID: 7595931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaldehyde-induced impairment of protein glycosylation in liver Golgi apparatus.
    Marinari UM; Pronzato MA; Pizzorno R; Cottalasso D; Maloberti G; Domenicotti C; Gazzo P; Nanni G
    Biochem Mol Biol Int; 1993 Apr; 29(6):1131-8. PubMed ID: 8330019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatoprotective activity of ellagic acid against carbon tetrachloride induced hepatotoxicity in rats.
    Singh K; Khanna AK; Chander R
    Indian J Exp Biol; 1999 Oct; 37(10):1025-6. PubMed ID: 10783760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents.
    Naik SR; Panda VS
    Liver Int; 2007 Apr; 27(3):393-9. PubMed ID: 17355462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two mechanisms of CCl4-induced fatty liver: lipid peroxidation or covalent binding studied in cultured rat hepatocytes.
    Becker E; Messner B; Berndt J
    Free Radic Res Commun; 1987; 3(1-5):299-308. PubMed ID: 3508441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the lipid component of liver microsomal membranes during the postischemic period after administration of alpha-tocopherol and lidocaine].
    Grek OR
    Vopr Med Khim; 1988; 34(4):57-63. PubMed ID: 3195132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral administration of diphenyl diselenide potentiates hepatotoxicity induced by carbon tetrachloride in rats.
    Nogueira CW; Borges LP; Souza AC
    J Appl Toxicol; 2009 Mar; 29(2):156-64. PubMed ID: 18989868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promethazine inhibits the formation of aldehydic products of lipid peroxidation but not covalent binding resulting from the exposure of rat liver fractions to CCl4.
    Poli G; Cheeseman KH; Biasi F; Chiarpotto E; Dianzani MU; Esterbauer H; Slater TF
    Biochem J; 1989 Dec; 264(2):527-32. PubMed ID: 2604730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depression of liver microsomal glucose 6-phosphatase activity in carbon tetrachloride-poisoned rats. Potential synergistic effects of lipid peroxidation and of covalent binding of haloalkane-derived free radicals to cellular components in the process.
    González Padrón A; de Toranzo EG; Castro JA
    Free Radic Biol Med; 1996; 21(1):81-7. PubMed ID: 8791095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.