BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21112545)

  • 1. Protoporphyrin IX photobleaching during the light irradiation phase of standard dermatological methyl-aminolevulinate photodynamic therapy.
    Tyrrell J; Campbell S; Curnow A
    Photodiagnosis Photodyn Ther; 2010 Dec; 7(4):232-8. PubMed ID: 21112545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between protoporphyrin IX photobleaching during real-time dermatological methyl-aminolevulinate photodynamic therapy (MAL-PDT) and subsequent clinical outcome.
    Tyrrell JS; Campbell SM; Curnow A
    Lasers Surg Med; 2010 Sep; 42(7):613-9. PubMed ID: 20806386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification.
    Tyrrell J; Campbell SM; Curnow A
    Photodiagnosis Photodyn Ther; 2011 Mar; 8(1):30-8. PubMed ID: 21333932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an oxygen pressure injection (OPI) device on the oxygen saturation of patients during dermatological methyl aminolevulinate photodynamic therapy.
    Blake E; Allen J; Thorn C; Shore A; Curnow A
    Lasers Med Sci; 2013 May; 28(3):997-1005. PubMed ID: 22926533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of protoporphyrin IX accumulation and destruction during methylaminolevulinate photodynamic therapy of skin tumours located at acral and nonacral sites.
    Tyrrell JS; Morton C; Campbell SM; Curnow A
    Br J Dermatol; 2011 Jun; 164(6):1362-8. PubMed ID: 21564050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a non-invasive fluorescence imaging system to monitor dermatological PDT.
    Tyrrell J; Campbell S; Curnow A
    Photodiagnosis Photodyn Ther; 2010 Jun; 7(2):86-97. PubMed ID: 20510303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen saturation and perfusion changes during dermatological methylaminolaevulinate photodynamic therapy.
    Tyrrell J; Thorn C; Shore A; Campbell S; Curnow A
    Br J Dermatol; 2011 Dec; 165(6):1323-31. PubMed ID: 21801159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative comparison of 5-aminolaevulinic acid- and methyl aminolevulinate-induced fluorescence, photobleaching and pain during photodynamic therapy.
    Valentine RM; Ibbotson SH; Brown CT; Wood K; Moseley H
    Photochem Photobiol; 2011; 87(1):242-9. PubMed ID: 21077899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of air cooling pain relief on protoporphyrin IX photobleaching and clinical efficacy during dermatological photodynamic therapy.
    Tyrrell J; Campbell SM; Curnow A
    J Photochem Photobiol B; 2011 Apr; 103(1):1-7. PubMed ID: 21277787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of light fractionation with a 2-h dark interval on the efficacy of topical hexyl-aminolevulinate photodynamic therapy in normal mouse skin.
    Middelburg TA; de Bruijn HS; van der Ploeg-van den Heuvel A; Neumann HA; Robinson DJ
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):703-9. PubMed ID: 24284130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy.
    Ascencio M; Collinet P; Farine MO; Mordon S
    Lasers Surg Med; 2008 Jul; 40(5):332-41. PubMed ID: 18563777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis.
    Johansson A; Faber F; Kniebühler G; Stepp H; Sroka R; Egensperger R; Beyer W; Kreth FW
    Lasers Surg Med; 2013 Apr; 45(4):225-34. PubMed ID: 23533060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protoporphyrin IX formation and photobleaching in different layers of normal human skin: methyl- and hexylaminolevulinate and different light sources.
    Togsverd-Bo K; Idorn LW; Philipsen PA; Wulf HC; Hædersdal M
    Exp Dermatol; 2012 Oct; 21(10):745-50. PubMed ID: 22882358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time course investigation of the fluorescence induced by topical application of 5-aminolevulinic acid and methyl aminolevulinate on normal human skin.
    Lesar A; Ferguson J; Moseley H
    Photodermatol Photoimmunol Photomed; 2009 Aug; 25(4):191-5. PubMed ID: 19614897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions.
    Blake E; Allen J; Curnow A
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weather conditions and daylight-mediated photodynamic therapy: protoporphyrin IX-weighted daylight doses measured in six geographical locations.
    Wiegell SR; Fabricius S; Heydenreich J; Enk CD; Rosso S; Bäumler W; Baldursson BT; Wulf HC
    Br J Dermatol; 2013 Jan; 168(1):186-91. PubMed ID: 22860885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skin tumor development after UV irradiation and photodynamic therapy is unaffected by short-term pretreatment with 5-fluorouracil, imiquimod and calcipotriol. An experimental hairless mouse study.
    Bay C; Togsverd-Bo K; Lerche CM; Haedersdal M
    J Photochem Photobiol B; 2016 Jan; 154():34-9. PubMed ID: 26678673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a handheld fluorescence imaging device to investigate the characteristics of protoporphyrin IX fluorescence in healthy and diseased skin.
    Kulyk O; Ibbotson SH; Moseley H; Valentine RM; Samuel ID
    Photodiagnosis Photodyn Ther; 2015 Dec; 12(4):630-9. PubMed ID: 26467274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of effect of selected sunscreens applied on ex vivo human skin for 5-methyl-aminolevulinic acid penetration and protoporphyrin IX photoactivation.
    Osman-Ponchet H; Sevin K; Gaborit A; Kouidhi M; Hanaizi J; Comby P; Ruty B; Bouvier G
    Photodiagnosis Photodyn Ther; 2017 Mar; 17():75-81. PubMed ID: 27903435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-aminolevulinic acid or methyl 5-aminolevulinate.
    de Bruijn HS; Meijers C; van der Ploeg-van den Heuvel A; Sterenborg HJ; Robinson DJ
    J Photochem Photobiol B; 2008 Aug; 92(2):91-7. PubMed ID: 18571933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.