These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 21112625)
1. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Blakeney BA; Tambralli A; Anderson JM; Andukuri A; Lim DJ; Dean DR; Jun HW Biomaterials; 2011 Feb; 32(6):1583-90. PubMed ID: 21112625 [TBL] [Abstract][Full Text] [Related]
2. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Ma J; He Y; Liu X; Chen W; Wang A; Lin CY; Mo X; Ye X Int J Nanomedicine; 2018; 13():1553-1567. PubMed ID: 29588584 [TBL] [Abstract][Full Text] [Related]
3. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
4. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. Hwang PT; Murdock K; Alexander GC; Salaam AD; Ng JI; Lim DJ; Dean D; Jun HW J Biomed Mater Res A; 2016 Apr; 104(4):1017-29. PubMed ID: 26567028 [TBL] [Abstract][Full Text] [Related]
5. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Lin W; Chen M; Qu T; Li J; Man Y J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374 [TBL] [Abstract][Full Text] [Related]
7. Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Shabani I; Haddadi-Asl V; Seyedjafari E; Soleimani M Biochem Biophys Res Commun; 2012 Jun; 423(1):50-4. PubMed ID: 22618233 [TBL] [Abstract][Full Text] [Related]
8. Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Song J; Zhu G; Wang L; An G; Shi X; Wang Y Biofabrication; 2017 Feb; 9(1):015018. PubMed ID: 28140360 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Zhong S; Zhang Y; Lim CT Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623 [TBL] [Abstract][Full Text] [Related]
10. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Stachewicz U; Szewczyk PK; Kruk A; Barber AH; Czyrska-Filemonowicz A Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():397-408. PubMed ID: 30573264 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Li D; Wu T; He N; Wang J; Chen W; He L; Huang C; Ei-Hamshary HA; Al-Deyab SS; Ke Q; Mo X Colloids Surf B Biointerfaces; 2014 Sep; 121():432-43. PubMed ID: 24996758 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
13. Electrospinning of highly porous scaffolds for cartilage regeneration. Thorvaldsson A; Stenhamre H; Gatenholm P; Walkenström P Biomacromolecules; 2008 Mar; 9(3):1044-9. PubMed ID: 18260633 [TBL] [Abstract][Full Text] [Related]
14. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076 [TBL] [Abstract][Full Text] [Related]
15. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
17. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]
18. Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds. Keit E; Chen S; Wang H; Xie J J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663697 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling. Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]