These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 21113160)

  • 21. Slow translocation of polynucleotides and their discrimination by α-hemolysin inside a single track-etched nanopore designed by atomic layer deposition.
    Cabello-Aguilar S; Balme S; Chaaya AA; Bechelany M; Balanzat E; Janot JM; Pochat-Bohatier C; Miele P; Dejardin P
    Nanoscale; 2013 Oct; 5(20):9582-6. PubMed ID: 24057036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanopores formed by DNA origami: a review.
    Bell NA; Keyser UF
    FEBS Lett; 2014 Oct; 588(19):3564-70. PubMed ID: 24928438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polynucleotide differentiation using hybrid solid-state nanopore functionalizing with α-hemolysin.
    Bentin J; Balme S; Picaud F
    Soft Matter; 2020 Jan; 16(4):1002-1010. PubMed ID: 31853534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein sensing with engineered protein nanopores.
    Mohammad MM; Movileanu L
    Methods Mol Biol; 2012; 870():21-37. PubMed ID: 22528256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translocation of double-strand DNA through a silicon oxide nanopore.
    Storm AJ; Chen JH; Zandbergen HW; Dekker C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051903. PubMed ID: 16089567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replication of individual DNA molecules under electronic control using a protein nanopore.
    Olasagasti F; Lieberman KR; Benner S; Cherf GM; Dahl JM; Deamer DW; Akeson M
    Nat Nanotechnol; 2010 Nov; 5(11):798-806. PubMed ID: 20871614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Determinants of Chirally Selective Transport of Amino Acids through the α-Hemolysin Protein Nanopores of Free-Standing Planar Lipid Membranes.
    Lee Y; Chong S; Lee C; Kim J; Choi SQ
    Nano Lett; 2024 Jan; 24(2):681-687. PubMed ID: 38185873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from
    Wilson JW; Rolland AD; Klausen GM; Prell JS
    Anal Chem; 2019 Aug; 91(15):10204-10211. PubMed ID: 31282652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Click Addition of a DNA Thread to the N-Termini of Peptides for Their Translocation through Solid-State Nanopores.
    Biswas S; Song W; Borges C; Lindsay S; Zhang P
    ACS Nano; 2015 Oct; 9(10):9652-64. PubMed ID: 26364915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unfoldase-mediated protein translocation through an α-hemolysin nanopore.
    Nivala J; Marks DB; Akeson M
    Nat Biotechnol; 2013 Mar; 31(3):247-50. PubMed ID: 23376966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps.
    Chen K; Muthukumar M
    ACS Nano; 2023 May; 17(10):9197-9208. PubMed ID: 37146154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA Origami in the Quest for Membrane Piercing.
    Niranjan Dhanasekar N; Thiyagarajan D; Bhatia D
    Chem Asian J; 2022 Oct; 17(19):e202200591. PubMed ID: 35947734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
    Di Fiori N; Squires A; Bar D; Gilboa T; Moustakas TD; Meller A
    Nat Nanotechnol; 2013 Dec; 8(12):946-51. PubMed ID: 24185943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS
    Sen P; Hoi H; Gupta M
    ACS Appl Bio Mater; 2021 Jul; 4(7):5416-5424. PubMed ID: 35006727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state nanopores towards single-molecule DNA sequencing.
    Goto Y; Akahori R; Yanagi I; Takeda KI
    J Hum Genet; 2020 Jan; 65(1):69-77. PubMed ID: 31420594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores.
    McNally B; Wanunu M; Meller A
    Nano Lett; 2008 Oct; 8(10):3418-22. PubMed ID: 18759490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Voltage Biomolecular Sensing Using a Bacteriophage Portal Protein Covalently Immobilized within a Solid-State Nanopore.
    Mojtabavi M; Greive SJ; Antson AA; Wanunu M
    J Am Chem Soc; 2022 Dec; 144(49):22540-22548. PubMed ID: 36455212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow.
    Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleobase Recognition by Truncated α-Hemolysin Pores.
    Ayub M; Stoddart D; Bayley H
    ACS Nano; 2015 Aug; 9(8):7895-903. PubMed ID: 26114210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.