These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 21113723)

  • 1. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways.
    Castro Marín I; Loef I; Bartetzko L; Searle I; Coupland G; Stitt M; Osuna D
    Planta; 2011 Mar; 233(3):539-52. PubMed ID: 21113723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC.
    Reeves PH; Murtas G; Dash S; Coupland G
    Development; 2002 Dec; 129(23):5349-61. PubMed ID: 12403707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.
    Moon J; Suh SS; Lee H; Choi KR; Hong CB; Paek NC; Kim SG; Lee I
    Plant J; 2003 Sep; 35(5):613-23. PubMed ID: 12940954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants.
    Reeves PH; Coupland G
    Plant Physiol; 2001 Jul; 126(3):1085-91. PubMed ID: 11457959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis.
    Jung JH; Ju Y; Seo PJ; Lee JH; Park CM
    Plant J; 2012 Feb; 69(4):577-88. PubMed ID: 21988498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.
    Yoo SY; Kim Y; Kim SY; Lee JS; Ahn JH
    PLoS One; 2007 Jul; 2(7):e642. PubMed ID: 17653269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Expression and functional analysis of SUA41gene in Arabidopsis thaliana].
    Huang GW; Han YZ; Fu YF
    Yi Chuan; 2013 Jan; 35(1):93-100. PubMed ID: 23357270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana.
    Gras DE; Vidal EA; Undurraga SF; Riveras E; Moreno S; Dominguez-Figueroa J; Alabadi D; Blázquez MA; Medina J; Gutiérrez RA
    J Exp Bot; 2018 Jan; 69(3):619-631. PubMed ID: 29309650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis.
    Yoo SK; Wu X; Lee JS; Ahn JH
    Plant J; 2011 Jan; 65(1):62-76. PubMed ID: 21175890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.
    Galvão VC; Horrer D; Küttner F; Schmid M
    Development; 2012 Nov; 139(21):4072-82. PubMed ID: 22992955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis.
    Huang B; Qian P; Gao N; Shen J; Hou S
    Planta; 2017 May; 245(5):939-950. PubMed ID: 28108812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FLC, a repressor of flowering, is regulated by genes in different inductive pathways.
    Rouse DT; Sheldon CC; Bagnall DJ; Peacock WJ; Dennis ES
    Plant J; 2002 Jan; 29(2):183-91. PubMed ID: 11851919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis.
    Osnato M; Castillejo C; Matías-Hernández L; Pelaz S
    Nat Commun; 2012 May; 3():808. PubMed ID: 22549837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SHB1 plays dual roles in photoperiodic and autonomous flowering.
    Zhou Y; Ni M
    Dev Biol; 2009 Jul; 331(1):50-7. PubMed ID: 19406114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of flowering signals in winter-annual Arabidopsis.
    Michaels SD; Himelblau E; Kim SY; Schomburg FM; Amasino RM
    Plant Physiol; 2005 Jan; 137(1):149-56. PubMed ID: 15618421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis.
    Jang S; Torti S; Coupland G
    Plant J; 2009 Nov; 60(4):614-25. PubMed ID: 19656342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems.
    Dorca-Fornell C; Gregis V; Grandi V; Coupland G; Colombo L; Kater MM
    Plant J; 2011 Sep; 67(6):1006-17. PubMed ID: 21609362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana.
    Johansson M; Staiger D
    J Exp Bot; 2014 Nov; 65(20):5811-22. PubMed ID: 25129129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.