BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21113816)

  • 1. Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control.
    Ricci I; Mosca M; Valzano M; Damiani C; Scuppa P; Rossi P; Crotti E; Cappelli A; Ulissi U; Capone A; Esposito F; Alma A; Mandrioli M; Sacchi L; Bandi C; Daffonchio D; Favia G
    Antonie Van Leeuwenhoek; 2011 Jan; 99(1):43-50. PubMed ID: 21113816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiotic control of mosquito borne disease.
    Ricci I; Valzano M; Ulissi U; Epis S; Cappelli A; Favia G
    Pathog Glob Health; 2012 Nov; 106(7):380-5. PubMed ID: 23265608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites.
    Valzano M; Cecarini V; Cappelli A; Capone A; Bozic J; Cuccioloni M; Epis S; Petrelli D; Angeletti M; Eleuteri AM; Favia G; Ricci I
    Malar J; 2016 Jan; 15():21. PubMed ID: 26754943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi.
    Ricci I; Damiani C; Scuppa P; Mosca M; Crotti E; Rossi P; Rizzi A; Capone A; Gonella E; Ballarini P; Chouaia B; Sagnon N; Esposito F; Alma A; Mandrioli M; Sacchi L; Bandi C; Daffonchio D; Favia G
    Environ Microbiol; 2011 Apr; 13(4):911-21. PubMed ID: 21208355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes.
    Cappelli A; Damiani C; Capone A; Bozic J; Mensah P; Clementi E; Spaccapelo R; Favia G; Ricci I
    Front Microbiol; 2023; 14():1157299. PubMed ID: 37396392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using bacteria to treat diseases.
    Caragata EP; Walker T
    Expert Opin Biol Ther; 2012 Jun; 12(6):701-12. PubMed ID: 22500583
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cappelli A; Favia G; Ricci I
    Front Microbiol; 2020; 11():621605. PubMed ID: 33552032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives.
    Ricci I; Damiani C; Capone A; DeFreece C; Rossi P; Favia G
    Curr Opin Microbiol; 2012 Jun; 15(3):278-84. PubMed ID: 22465193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mosquito holobiont: fresh insight into mosquito-microbiota interactions.
    Guégan M; Zouache K; Démichel C; Minard G; Tran Van V; Potier P; Mavingui P; Valiente Moro C
    Microbiome; 2018 Mar; 6(1):49. PubMed ID: 29554951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paratransgenesis: a promising new strategy for mosquito vector control.
    Wilke AB; Marrelli MT
    Parasit Vectors; 2015 Jun; 8():342. PubMed ID: 26104575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi.
    Cappelli A; Ulissi U; Valzano M; Damiani C; Epis S; Gabrielli MG; Conti S; Polonelli L; Bandi C; Favia G; Ricci I
    PLoS One; 2014; 9(5):e95988. PubMed ID: 24788884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates.
    Raharimalala FN; Boukraa S; Bawin T; Boyer S; Francis F
    Parasitol Res; 2016 Apr; 115(4):1391-9. PubMed ID: 26670313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic approaches to interfere with malaria transmission by vector mosquitoes.
    Wang S; Jacobs-Lorena M
    Trends Biotechnol; 2013 Mar; 31(3):185-93. PubMed ID: 23395485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala).
    Laitila A; Sarlin T; Raulio M; Wilhelmson A; Kotaviita E; Huttunen T; Juvonen R
    Antonie Van Leeuwenhoek; 2011 Jan; 99(1):75-84. PubMed ID: 20872177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation and Safety Tests of a
    Cappelli A; Amantini C; Maggi F; Favia G; Ricci I
    Toxins (Basel); 2021 Sep; 13(10):. PubMed ID: 34678969
    [No Abstract]   [Full Text] [Related]  

  • 16. Aquatic insect predators and mosquito control.
    Shaalan EA; Canyon DV
    Trop Biomed; 2009 Dec; 26(3):223-61. PubMed ID: 20237438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing mosquito-Wolbachia symbiosis for vector and disease control.
    Bourtzis K; Dobson SL; Xi Z; Rasgon JL; Calvitti M; Moreira LA; Bossin HC; Moretti R; Baton LA; Hughes GL; Mavingui P; Gilles JR
    Acta Trop; 2014 Apr; 132 Suppl():S150-63. PubMed ID: 24252486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symbiotic Bacteria as Potential Agents for Mosquito Control.
    Kajla MK
    Trends Parasitol; 2020 Jan; 36(1):4-7. PubMed ID: 31375436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus.
    Kurtzman CP
    Antonie Van Leeuwenhoek; 2011 Jan; 99(1):13-23. PubMed ID: 20838888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular discrimination of mosquito vectors and their pathogens.
    Sim S; Ramirez JL; Dimopoulos G
    Expert Rev Mol Diagn; 2009 Oct; 9(7):757-65. PubMed ID: 19817558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.