These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2111385)

  • 1. Quantitative photoacoustic spectroscopy of cataractous human lenses.
    Bernini U; Reccia R; Russo P; Scala A
    J Photochem Photobiol B; 1990 Mar; 4(4):407-17. PubMed ID: 2111385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ganglioside composition in human cataractous nuclei.
    Swindell RT; Harris H; Buchanan L; Bell C; Albers-Jackson B
    Ophthalmic Res; 1988; 20(4):232-6. PubMed ID: 3186194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures.
    Iriyama K; Mizuno A; Ozaki Y; Itoh K; Matsuzaki H
    Curr Eye Res; 1982-1983; 2(7):489-92. PubMed ID: 7182109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridine nucleotides in normal and cataractous human lenses.
    Stewart A; Augusteyn RC
    Exp Eye Res; 1984 Sep; 39(3):307-15. PubMed ID: 6499953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of coloration of human lenses induced by near-ultraviolet-photo-oxidized 3-hydroxykynurenine.
    Tomoda A; Yoneyama Y; Yamaguchi T; Shirao E; Kawasaki K
    Ophthalmic Res; 1990; 22(3):152-9. PubMed ID: 2385431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory.
    Metlapally S; Costello MJ; Gilliland KO; Ramamurthy B; Krishna PV; Balasubramanian D; Johnsen S
    Exp Eye Res; 2008 Feb; 86(2):434-44. PubMed ID: 18191834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet oxygen as a possible factor in human senile nuclear cataract development.
    Zigler JS; Goosey JD
    Curr Eye Res; 1984 Jan; 3(1):59-65. PubMed ID: 6690229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo light scattering intensity in the lens versus in vitro spectral transmission in the nuclear region.
    Nishimoto K; Sasaki K
    Ophthalmic Res; 1995; 27(1):1-11. PubMed ID: 7596553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering of whole excised human cataractous lenses. Relationships between different light scattering parameters.
    Bettelheim FA; Chylack LT
    Exp Eye Res; 1985 Jul; 41(1):19-30. PubMed ID: 4029284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential scanning calorimetric measurements on human lenses.
    Bettelheim FA; Christian S; Lee LK
    Curr Eye Res; 1982-1983; 2(12):803-8. PubMed ID: 7187637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione and glutathione-related enzymes in human cataractous lenses.
    Xie PY; Kanai A; Nakajima A; Kitahara S; Ohtsu A; Fujii K
    Ophthalmic Res; 1991; 23(3):133-40. PubMed ID: 1945285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier analysis of cytoplasmic texture in nuclear fiber cells from transparent and cataractous human and animal lenses.
    Freel CD; Gilliland KO; Wesley Lane C; Giblin FJ; Costello MJ
    Exp Eye Res; 2002 Jun; 74(6):689-702. PubMed ID: 12126943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy.
    Freel CD; al-Ghoul KJ; Kuszak JR; Costello MJ
    BMC Ophthalmol; 2003 Jan; 3():1. PubMed ID: 12515578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of the human lens constituents.
    Zelentsova EA; Yanshole LV; Fursova AZ; Tsentalovich YP
    J Photochem Photobiol B; 2017 Aug; 173():318-324. PubMed ID: 28624737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation.
    Siezen RJ; Fisch MR; Slingsby C; Benedek GB
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1701-5. PubMed ID: 3856852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione levels in human lens: regional distribution in different forms of cataract.
    Pau H; Graf P; Sies H
    Exp Eye Res; 1990 Jan; 50(1):17-20. PubMed ID: 2307192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical photon correlation spectroscopy evaluation of human diabetic lenses.
    Bursell SE; Baker RS; Weiss JN; Haughton JF; Rand LI
    Exp Eye Res; 1989 Aug; 49(2):241-58. PubMed ID: 2767171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.