These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Volume of a nanoscale water bridge. Sirghi L; Szoszkiewicz R; Riedo E Langmuir; 2006 Jan; 22(3):1093-8. PubMed ID: 16430270 [TBL] [Abstract][Full Text] [Related]
8. Electrical conductance study of theta-liquid bridges. Evgenidis SP; Kostoglou M; Karapantsios TD J Colloid Interface Sci; 2006 Oct; 302(2):597-604. PubMed ID: 16854428 [TBL] [Abstract][Full Text] [Related]
9. Controlling the pinning time of a receding contact line under forced wetting conditions. Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711 [TBL] [Abstract][Full Text] [Related]
10. A mathematical model for the interactions between non-identical rough spheres, liquid bridge and liquid vapor. Nazemi AH; Majnooni-Heris A J Colloid Interface Sci; 2012 Mar; 369(1):402-10. PubMed ID: 22189390 [TBL] [Abstract][Full Text] [Related]
11. Capillary liquid bridges in atomic force microscopy: formation, rupture, and hysteresis. Men Y; Zhang X; Wang W J Chem Phys; 2009 Nov; 131(18):184702. PubMed ID: 19916618 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional simulations of liquid bridges between two cylinders: forces, energies, and torques. Virozub A; Haimovich N; Brandon S Langmuir; 2009 Nov; 25(22):12837-42. PubMed ID: 19852478 [TBL] [Abstract][Full Text] [Related]
14. Effects of dynamic contact angle on liquid infiltration into inclined capillary tubes: (semi)-analytical solutions. Hilpert M J Colloid Interface Sci; 2009 Sep; 337(1):138-44. PubMed ID: 19540506 [TBL] [Abstract][Full Text] [Related]
15. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO; Ruckenstein E J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497 [TBL] [Abstract][Full Text] [Related]
16. Wetting morphologies on an array of fibers of different radii. Sauret A; Boulogne F; Cébron D; Dressaire E; Stone HA Soft Matter; 2015 May; 11(20):4034-40. PubMed ID: 25899307 [TBL] [Abstract][Full Text] [Related]
17. Discontinuous liquid rise in capillaries with varying cross-sections. Tsori Y Langmuir; 2006 Oct; 22(21):8860-3. PubMed ID: 17014128 [TBL] [Abstract][Full Text] [Related]
18. Liquid withdrawal from capillary tubes: explicit and implicit analytical solution for constant and dynamic contact angle. Hilpert M J Colloid Interface Sci; 2010 Nov; 351(1):267-76. PubMed ID: 20691978 [TBL] [Abstract][Full Text] [Related]
19. A molecular dynamics study of the force between planar substrates due to capillary bridges. Saavedra JH; Rozas RE; Toledo PG J Colloid Interface Sci; 2014 Jul; 426():145-51. PubMed ID: 24863777 [TBL] [Abstract][Full Text] [Related]
20. Capillary rise between parallel plates under dynamic conditions. Wolf FG; dos Santos LO; Philippi PC J Colloid Interface Sci; 2010 Apr; 344(1):171-9. PubMed ID: 20096416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]