BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21114315)

  • 1. Ring-closing metathesis reactions of terminal alkene-derived cyclic phosphazenes.
    Kumar D; Singh N; Keshav K; Elias AJ
    Inorg Chem; 2011 Jan; 50(1):250-60. PubMed ID: 21114315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of the first examples of ansa-spiro substituted fluorophosphazenes and their structural studies: analysis of C-H...F-P weak interactions in substituted fluorophosphazenes.
    Muralidharan K; Elias AJ
    Inorg Chem; 2003 Nov; 42(23):7535-43. PubMed ID: 14606849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium-catalyzed metathesis reactions of ortho- and meta-dialkenyl-carboranes: efficient ring-closing and acyclic diene polymerization reactions.
    Guron M; Wei X; Carroll PJ; Sneddon LG
    Inorg Chem; 2010 Jul; 49(13):6139-47. PubMed ID: 20521802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and reactivity of homogeneous and heterogeneous ruthenium-based metathesis catalysts containing electron-withdrawing ligands.
    Krause JO; Nuyken O; Wurst K; Buchmeiser MR
    Chemistry; 2004 Feb; 10(3):777-84. PubMed ID: 14767943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and structure of new carborane-substituted cyclotriphosphazenes.
    Abizanda D; Crespo O; Gimeno MC; Jiménez J; Laguna A
    Chemistry; 2003 Jul; 9(14):3310-9. PubMed ID: 12866075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ansa versus spiro substitution of cyclophosphazenes: is fluorination essential for ansa to spiro transformation of cyclophosphazenes?
    Muralidharan K; Venugopalan P; Elias AJ
    Inorg Chem; 2003 May; 42(10):3176-82. PubMed ID: 12739956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridged cyclophosphazenes resulting from deprotonation reactions of cyclotriphophazenes bearing a P-NH group.
    Beşli S; Coles SJ; Davies DB; Kılıç A; Shaw RA
    Dalton Trans; 2011 May; 40(19):5307-15. PubMed ID: 21475740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and reactions of ethynylferrocene-derived fluoro- and chlorocyclotriphosphazenes.
    Keshav K; Singh N; Elias AJ
    Inorg Chem; 2010 Jun; 49(12):5753-65. PubMed ID: 20507124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spiro to ansa rearrangement in cyclotriphosphazene derivatives.
    Beşli S; Coles SJ; Davies DB; Hursthouse MB; Kiliç A; Shaw RA
    Dalton Trans; 2007 Jul; (26):2792-801. PubMed ID: 17592596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olefin metathesis catalysts bearing a pH-responsive NHC ligand: a feasible approach to catalyst separation from RCM products.
    Balof SL; P'pool SJ; Berger NJ; Valente EJ; Shiller AM; Schanz HJ
    Dalton Trans; 2008 Nov; (42):5791-9. PubMed ID: 18941667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus-nitrogen compounds. Part 20: Fully substituted spiro-cyclotriphosphazenic lariat (PNP-pivot) ether derivatives.
    Okumuş A; Bilge S; Kiliç Z; Oztürk A; Hökelek T; Yilmaz F
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Aug; 76(3-4):401-9. PubMed ID: 20444643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydration reaction of hydroxyl substituted alkenes and alkynes on the Ru(2)S(2) complex.
    Matsumoto K; Moriya Y; Sugiyama H; Hossain MM; Lin YS
    J Am Chem Soc; 2002 Nov; 124(44):13106-13. PubMed ID: 12405838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved molecular weight control in ring-opening metathesis polymerization (ROMP) reactions with ru-based olefin metathesis catalysts using N donors and acid: a kinetic and mechanistic investigation.
    Dunbar MA; Balof SL; LaBeaud LJ; Yu B; Lowe AB; Valente EJ; Schanz HJ
    Chemistry; 2009 Nov; 15(45):12435-46. PubMed ID: 19821457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olefin metathesis as an inorganic synthetic tool: cross and ring closing metathesis reactions of diruthenium-bound omega-alkene-alpha-carboxylates.
    Chen WZ; Protasiewicz JD; Davis SA; Updegraff JB; Ma LQ; Fanwick PE; Ren T
    Inorg Chem; 2007 Apr; 46(9):3775-82. PubMed ID: 17391028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Reactivity of the Phosphorus-Chlorine and Carbon-Chlorine Bonds in Cyclic Chlorocarbaphosphazenes: An Unusual Activation of a Carbon-Nitrogen Bond in Trialkylamines.
    Vij A; Elias AJ; Kirchmeier RL; Shreeve JM
    Inorg Chem; 1997 Jun; 36(13):2730-2745. PubMed ID: 11669905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isocyanate- and isothiocyanate-derived Ru(IV)-based alkylidenes: synthesis, structure, and activity.
    Kumar PS; Wurst K; Buchmeiser MR
    Chem Asian J; 2009 Aug; 4(8):1275-83. PubMed ID: 19565583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and structure of nongeminally substituted cyclic phosphazenes with haloalkyl and thioester functional groups.
    Jung JH; Potluri SK; Zhang H; Wisian-Neilson P
    Inorg Chem; 2004 Nov; 43(24):7784-91. PubMed ID: 15554643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si-C bond activation in the reaction of first generation Grubbs' catalyst with alkynylsilanes - formation of [Cl(2){P(C(6)H(11))(3)}(2)Ru(=CHCH=CHPh)] anddisiloxanes.
    Powała B; Fischer H; Pietraszuk C
    Dalton Trans; 2010 Feb; 39(8):1923-5. PubMed ID: 20148204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclo- and carbophosphazene-supported ligands for the assembly of heterometallic (Cu2+/Ca2+, Cu2+/Dy3+, Cu2+/Tb3+) complexes: synthesis, structure, and magnetism.
    Chandrasekhar V; Senapati T; Dey A; Das S; Kalisz M; Clérac R
    Inorg Chem; 2012 Feb; 51(4):2031-8. PubMed ID: 22320309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereodirective effects in mixed substituent vinyloxycyclotriphosphazenes.
    Carter KR; Calichman M; Allen CW
    Inorg Chem; 2009 Aug; 48(15):7476-81. PubMed ID: 19505111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.