These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2111459)

  • 1. In vitro and in vivo reactions of nucleic acids with reducing sugars.
    Lee AT; Cerami A
    Mutat Res; 1990 May; 238(3):185-91. PubMed ID: 2111459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonenzymatic glycosylation of DNA by reducing sugars.
    Lee AT; Cerami A
    Prog Clin Biol Res; 1989; 304():291-9. PubMed ID: 2780680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of reactive intermediate(s) of glucose 6-phosphate and lysine capable of rapidly reacting with DNA.
    Lee AT; Cerami A
    Mutat Res; 1987 Aug; 179(2):151-8. PubMed ID: 3112565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression.
    Bucala R; Model P; Cerami A
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):105-9. PubMed ID: 6582469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of gamma delta transposition in response to elevated glucose-6-phosphate levels.
    Lee AT; Cerami A
    Mutat Res; 1991 Jul; 249(1):125-33. PubMed ID: 1648661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product.
    Papoulis A; al-Abed Y; Bucala R
    Biochemistry; 1995 Jan; 34(2):648-55. PubMed ID: 7819260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro studies of histone glycation.
    De Bellis D; Horowitz MI
    Biochim Biophys Acta; 1987 Dec; 926(3):365-8. PubMed ID: 3120786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonenzymatic glycation of DNA nucleosides with reducing sugars.
    Dutta U; Cohenford MA; Dain JA
    Anal Biochem; 2005 Oct; 345(2):171-80. PubMed ID: 16143291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of DNA by glucose 6-phosphate induces DNA rearrangements in an Escherichia coli plasmid.
    Bucala R; Model P; Russel M; Cerami A
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8439-42. PubMed ID: 3866232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of bioactive peptides in the presence of sugars--characterization and stability studies of the adducts generated via the Maillard reaction.
    Roscić M; Horvat S
    Bioorg Med Chem; 2006 Jul; 14(14):4933-43. PubMed ID: 16563774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nonenzymatic glycosylation (the Maillard reaction) in the body].
    Virovets OA
    Vopr Pitan; 1988; (5):4-9. PubMed ID: 3064414
    [No Abstract]   [Full Text] [Related]  

  • 12. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein.
    Brownlee M; Vlassara H; Cerami A
    Diabetes; 1985 Sep; 34(9):938-41. PubMed ID: 4029512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose.
    Ferreira AE; Ponces Freire AM; Voit EO
    Biochem J; 2003 Nov; 376(Pt 1):109-21. PubMed ID: 12911334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced glycation of rat liver histone octamers: an in vitro study.
    Gugliucci A
    Biochem Biophys Res Commun; 1994 Aug; 203(1):588-93. PubMed ID: 8074708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maillard glycation of beta-lactoglobulin induces conformation changes.
    Chevalier F; Chobert JM; Dalgalarrondo M; Choiset Y; Haertlé T
    Nahrung; 2002 Apr; 46(2):58-63. PubMed ID: 12017991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.
    Ma XJ; Gao JY; Tong P; Li X; Chen HB
    J Sci Food Agric; 2017 Dec; 97(15):5168-5175. PubMed ID: 28436030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo.
    Oh JG; Chun SH; Kim DH; Kim JH; Shin HS; Cho YS; Kim YK; Choi HD; Lee KW
    Carbohydr Res; 2017 Sep; 449():47-58. PubMed ID: 28728011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical detection of N2-[1-(1-carboxy)ethyl]guanosine, an advanced glycation end product formed by the reaction of DNA and reducing sugars or L-ascorbic acid in vitro.
    Seidel W; Pischetsrieder M
    Biochim Biophys Acta; 1998 Nov; 1425(3):478-84. PubMed ID: 9838211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.