BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 2111463)

  • 41. Prediction of the GTPase activities by using the semiempirical molecular orbital theory.
    Kinoshita H; Shimizu K
    Bioorg Med Chem Lett; 1998 May; 8(9):1083-8. PubMed ID: 9871712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis.
    Privé GG; Milburn MV; Tong L; de Vos AM; Yamaizumi Z; Nishimura S; Kim SH
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3649-53. PubMed ID: 1565661
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of nucleotide-free and metal ion-free p21 "apoprotein".
    Feuerstein J; Goody RS; Wittinghofer A
    J Biol Chem; 1987 Jun; 262(18):8455-8. PubMed ID: 3298232
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics simulation of the solution structures of Ha-ras-p21 GDP and GTP complexes: flexibility, possible hinges, and levers of the conformational transition.
    Díaz JF; Wroblowski B; Engelborghs Y
    Biochemistry; 1995 Sep; 34(37):12038-47. PubMed ID: 7547942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis.
    Mixon MB; Lee E; Coleman DE; Berghuis AM; Gilman AG; Sprang SR
    Science; 1995 Nov; 270(5238):954-60. PubMed ID: 7481799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulators and effectors of ras proteins.
    Bollag G; McCormick F
    Annu Rev Cell Biol; 1991; 7():601-32. PubMed ID: 1667084
    [No Abstract]   [Full Text] [Related]  

  • 47. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras.
    Schweins T; Geyer M; Kalbitzer HR; Wittinghofer A; Warshel A
    Biochemistry; 1996 Nov; 35(45):14225-31. PubMed ID: 8916907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional structure of p21H-ras and its implications.
    Wittinghofer F
    Semin Cancer Biol; 1992 Aug; 3(4):189-98. PubMed ID: 1421163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. What is the role of the helical domain of Gsalpha in the GTPase reaction?
    Shnerb T; Lin N; Shurki A
    Biochemistry; 2007 Sep; 46(38):10875-85. PubMed ID: 17727271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [ras p21/ras p21-like small G proteins and their regulatory proteins].
    Isomura M; Kawata M; Takai Y
    Nihon Rinsho; 1990 Aug; 48(8):61-70. PubMed ID: 2123950
    [No Abstract]   [Full Text] [Related]  

  • 51. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy.
    Löw A; Sprinzl M; Limmer S
    Eur J Biochem; 1993 Apr; 213(2):781-8. PubMed ID: 8386636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP.
    Tong LA; de Vos AM; Milburn MV; Kim SH
    J Mol Biol; 1991 Feb; 217(3):503-16. PubMed ID: 1899707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ras oncogene protein as a G-protein.
    Sigal IS; D'Alonzo JS; Ahern JD; Marshall MS; Smith GM; Scolnick EM; Gibbs JB
    Adv Second Messenger Phosphoprotein Res; 1988; 21():193-200. PubMed ID: 3137958
    [No Abstract]   [Full Text] [Related]  

  • 55. The frozen solution structure of p21 ras determined by ESEEM spectroscopy reveals weak coordination of Thr35 to the active site metal ion.
    Farrar CT; Halkides CJ; Singel DJ
    Structure; 1997 Aug; 5(8):1055-66. PubMed ID: 9309221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equilibrium and kinetic study of the conformational transition toward the active state of p21Ha-ras, induced by the binding of BeF3- to the GDP-bound state, in the absence of GTPase-activating proteins.
    Díaz JF; Sillen A; Engelborghs Y
    J Biol Chem; 1997 Sep; 272(37):23138-43. PubMed ID: 9287316
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting the structural flexibility of the complex p21(ras)-GTP: the catalytic conformation of the molecular switch II.
    Soares TA; Miller JH; Straatsma TP
    Proteins; 2001 Dec; 45(4):297-312. PubMed ID: 11746677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular model of the G protein alpha subunit based on the crystal structure of the HRAS protein.
    Holbrook SR; Kim SH
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):1751-5. PubMed ID: 2494654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and biochemical characterization of the GTPgammaS-, GDP.Pi-, and GDP-bound forms of a GTPase-deficient Gly42 --> Val mutant of Gialpha1.
    Raw AS; Coleman DE; Gilman AG; Sprang SR
    Biochemistry; 1997 Dec; 36(50):15660-9. PubMed ID: 9398294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformation of guanosine 5'-diphosphate as bound to a human c-Ha-ras mutant protein: a nuclear Overhauser effect study.
    Ha JM; Ito Y; Kawai G; Miyazawa T; Miura K; Ohtsuka E; Noguchi S; Nishimura S; Yokoyama S
    Biochemistry; 1989 Oct; 28(21):8411-6. PubMed ID: 2690941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.