BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 21115118)

  • 1. Epac2-mediated dendritic spine remodeling: implications for disease.
    Penzes P; Woolfrey KM; Srivastava DP
    Mol Cell Neurosci; 2011 Feb; 46(2):368-80. PubMed ID: 21115118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines.
    Woolfrey KM; Srivastava DP; Photowala H; Yamashita M; Barbolina MV; Cahill ME; Xie Z; Jones KA; Quilliam LA; Prakriya M; Penzes P
    Nat Neurosci; 2009 Oct; 12(10):1275-84. PubMed ID: 19734897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density.
    Jones KA; Sumiya M; Woolfrey KM; Srivastava DP; Penzes P
    Mol Cell Neurosci; 2019 Jul; 98():19-31. PubMed ID: 31059774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exchange protein directly activated by cAMP 2 is required for corticotropin-releasing hormone-mediated spine loss.
    Xie Z; Penzes P; Srivastava DP
    Eur J Neurosci; 2019 Oct; 50(7):3108-3114. PubMed ID: 31199033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of synapse development and plasticity by Rho GTPase regulatory proteins.
    Tolias KF; Duman JG; Um K
    Prog Neurobiol; 2011 Jul; 94(2):133-48. PubMed ID: 21530608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts.
    Jones KA; Eng AG; Raval P; Srivastava DP; Penzes P
    J Biol Chem; 2014 Dec; 289(51):35517-29. PubMed ID: 25378388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
    Nishiyama J
    Psychiatry Clin Neurosci; 2019 Sep; 73(9):541-550. PubMed ID: 31215705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural modulation of dendritic spines during synaptic plasticity.
    Fortin DA; Srivastava T; Soderling TR
    Neuroscientist; 2012 Aug; 18(4):326-41. PubMed ID: 21670426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches.
    de Bartolomeis A; Latte G; Tomasetti C; Iasevoli F
    Mol Neurobiol; 2014 Feb; 49(1):484-511. PubMed ID: 23999870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines.
    Xie Z; Srivastava DP; Photowala H; Kai L; Cahill ME; Woolfrey KM; Shum CY; Surmeier DJ; Penzes P
    Neuron; 2007 Nov; 56(4):640-56. PubMed ID: 18031682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Cdk5 in Kalirin7-Mediated Formation of Dendritic Spines.
    Li MX; Qiao H; Zhang M; Ma XM
    Neurochem Res; 2019 May; 44(5):1243-1251. PubMed ID: 30875016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent CaMK and RacGEF signals control dendritic structure and function.
    Penzes P; Cahill ME; Jones KA; Srivastava DP
    Trends Cell Biol; 2008 Sep; 18(9):405-13. PubMed ID: 18701290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin in dendritic spines: connecting dynamics to function.
    Hotulainen P; Hoogenraad CC
    J Cell Biol; 2010 May; 189(4):619-29. PubMed ID: 20457765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guanine nucleotide exchange factor Epac2-dependent activation of the GTP-binding protein Rap2A mediates cAMP-dependent growth arrest in neuroendocrine cells.
    Emery AC; Xu W; Eiden MV; Eiden LE
    J Biol Chem; 2017 Jul; 292(29):12220-12231. PubMed ID: 28546426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic spines: Revisiting the physiological role.
    Chidambaram SB; Rathipriya AG; Bolla SR; Bhat A; Ray B; Mahalakshmi AM; Manivasagam T; Thenmozhi AJ; Essa MM; Guillemin GJ; Chandra R; Sakharkar MK
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jun; 92():161-193. PubMed ID: 30654089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases.
    Woolfrey KM; Srivastava DP
    Neural Plast; 2016; 2016():3025948. PubMed ID: 26989514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development.
    Tolias KF; Bikoff JB; Kane CG; Tolias CS; Hu L; Greenberg ME
    Proc Natl Acad Sci U S A; 2007 Apr; 104(17):7265-70. PubMed ID: 17440041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enlarged dendritic spines and pronounced neophobia in mice lacking the PSD protein RICH2.
    Sarowar T; Grabrucker S; Föhr K; Mangus K; Eckert M; Bockmann J; Boeckers TM; Grabrucker AM
    Mol Brain; 2016 Mar; 9():28. PubMed ID: 26969129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanisms of Non-ionotropic NMDA Receptor Signaling in Dendritic Spine Shrinkage.
    Stein IS; Park DK; Flores JC; Jahncke JN; Zito K
    J Neurosci; 2020 May; 40(19):3741-3750. PubMed ID: 32321746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.