BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 21115278)

  • 1. Electrochemical properties of myoglobin deposited on multi-walled carbon nanotube/ciprofloxacin film.
    Kumar SA; Wang SF; Chang YT; Lu HC; Yeh CT
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):526-31. PubMed ID: 21115278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode.
    Zhang L; Tian DB; Zhu JJ
    Bioelectrochemistry; 2008 Nov; 74(1):157-63. PubMed ID: 18722825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode.
    Sun W; Li X; Wang Y; Li X; Zhao C; Jiao K
    Bioelectrochemistry; 2009 Jun; 75(2):170-5. PubMed ID: 19394899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct electrochemistry and electrocatalysis of myoglobin on redox-active self-assembling monolayers derived from nitroaniline modified electrode.
    Kumar SA; Chen SM
    Biosens Bioelectron; 2007 Jun; 22(12):3042-50. PubMed ID: 17306525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode.
    Fotouhi L; Alahyari M
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):110-4. PubMed ID: 20655184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films.
    Dai Z; Xiao Y; Yu X; Mai Z; Zhao X; Zou X
    Biosens Bioelectron; 2009 Feb; 24(6):1629-34. PubMed ID: 18829300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.
    Sun W; Cao L; Deng Y; Gong S; Shi F; Li G; Sun Z
    Anal Chim Acta; 2013 Jun; 781():41-7. PubMed ID: 23684463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.
    Safavi A; Farjami F
    Anal Biochem; 2010 Jul; 402(1):20-5. PubMed ID: 20230770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoglobin/sol-gel film modified electrode: direct electrochemistry and electrochemical catalysis.
    Wang Q; Lu G; Yang B
    Langmuir; 2004 Feb; 20(4):1342-7. PubMed ID: 15803717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode.
    Xu J; Li W; Yin Q; Zhong H; Zhu Y; Jin L
    J Colloid Interface Sci; 2007 Nov; 315(1):170-6. PubMed ID: 17681509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix.
    Dai Z; Xu X; Ju H
    Anal Biochem; 2004 Sep; 332(1):23-31. PubMed ID: 15301945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct electrochemistry and electrocatalysis of myoglobin-based nanocomposite membrane electrode.
    Li Y; Li Y; Yang Y
    Bioelectrochemistry; 2011 Oct; 82(2):112-6. PubMed ID: 21745763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.
    Hegde RN; Hosamani RR; Nandibewoor ST
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):259-65. PubMed ID: 19446444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes.
    Wang S; Xie F; Liu G
    Talanta; 2009 Feb; 77(4):1343-50. PubMed ID: 19084647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-lysine) biocomposite for the detection of H2O2 and iodate.
    Ezhil Vilian AT; Chen SM; Lou BS
    Biosens Bioelectron; 2014 Nov; 61():639-47. PubMed ID: 24967754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode.
    Salimi A; Compton RG; Hallaj R
    Anal Biochem; 2004 Oct; 333(1):49-56. PubMed ID: 15351279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of myoglobin in titanate nanotubes film.
    Liu A; Wei M; Honma I; Zhou H
    Anal Chem; 2005 Dec; 77(24):8068-74. PubMed ID: 16351157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode.
    Zhao W; Wang H; Qin X; Wang X; Zhao Z; Miao Z; Chen L; Shan M; Fang Y; Chen Q
    Talanta; 2009 Dec; 80(2):1029-33. PubMed ID: 19836592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.